

December 4, 2025

To: Tiffany Brown, Senior Planner
City of Morgan Hill
17575 Peak Avenue
Morgan Hill, CA 95037

Subject: Primrose School Project Senate Bill (SB) 131 Exemption Memorandum

Ms. Brown:

Raney has prepared the following memorandum to demonstrate the Primrose School Project's (proposed project) exemption from review under the California Environmental Quality Act (CEQA) pursuant to SB 131.

Project Description

The following provides a description of the project site's current location and setting, as well as the project components.

Project Location and Setting

The approximately 1.62-acre project site, identified by Assessor's Parcel Number (APN) 726-33-029, is located at 735 Cochrane Road in the City of Morgan Hill, California (see Figure 1 and Figure 2 at the end of this document). The site currently consists of an undeveloped grassy lot with trees along the northwest and southwest borders. Surrounding land uses include undeveloped land to the north, across Woodview Avenue; undeveloped land to the east/northeast as well as commercial uses and an associated parking lot; office space and commercial uses to the south/southwest; and commercial uses to the west, across Woodview Avenue. The City of Morgan Hill 2035 General Plan designates the site as Commercial and the site is zoned General Commercial (CG).

Project Components

The proposed project would include the construction of a 13,730-square foot (sf) private preschool/daycare that would employ 27 staff members and serve a maximum of 212 students aged from six weeks to four years, or from infant daycare to pre-kindergarten (see Figure 3 at the end of this document). Associated site development would include five outdoor play areas, two biotreatment ponds on the southern edge and southeastern corner of the project site, and improvements to a portion of the adjacent southern parking lot. The proposed building would include 13 classrooms ranging from 517 sf to 854 sf, a 273-sf warming kitchen, a 204-sf office area, a 215-sf reception area, and other smaller ancillary rooms including but not limited to a 165-sf conference room, a 130-sf laundry room, a 107-sf staff room, and 16 toilets (see Figure 4 at the end of this document). The outdoor play areas would include a 6,630-sf after-school playground, 2,235-sf infant playground, 3,200-sf open play area, 7,795-sf early preschool playground, and 1,145-sf primrose patch. Canopy and playground shade structures would be located within the outdoor play areas. As part of the proposed project, a new four-foot sidewalk would be constructed along the site's southwestern boundary connecting to Woodview Avenue. A total of 10 new parking stalls would be constructed along the eastern side of the proposed preschool building, which would consist of seven regular parking stalls, two Americans with

Disabilities Act (ADA) compliant accessible stalls, and one van accessible stall. In addition, the existing parking lot east of the site would be available for preschool use, as the parking lot would be shared with the existing commercial uses. Site access would be provided by way of the existing parking lot.

The proposed project would operate between the hours of 6:00 AM and 6:30 PM, Monday through Friday. The morning student drop off would occur between 6:00 AM and 9:30 AM, with the peak hour anticipated to be between 7:30 AM and 8:30 AM. The evening pickup would be between 3:30 PM and 6:30 PM, with the peak hour anticipated to be between 4:30 PM and 5:30 PM. Special events would occasionally be held in the evenings and on weekends. During regular project operations, staff members would take groups of students outside to the proposed playground areas for approximately 40 minutes, two times per day.

Access to the project site would be provided from existing driveways that currently serve the Madrone Village shopping center. The driveways consist of one existing full-access driveway along Madrone Parkway to the northeast of the project site and one existing right-in/right-out only driveway along Cochrane Road to the southeast of the project site. Continuous vehicular circulation would be provided throughout the parking lot in order to aid the flow of traffic. All parents would be required to park on-site and walk their children to and from the proposed facility and, as such, vehicles associated with the proposed project are expected to park for approximately five to 10 minutes for each drop-off and pick-up.

The proposed project would require City approval of a Conditional Use Permit and a Design Permit.

Senate Bill 131 Exemption

On June 30, 2025, California Governor Gavin Newsom signed SB 131 into effect. SB 131 includes updated provisions for development projects that are considered statutorily exempt from review under CEQA. Pursuant to Public Resources Code (PRC) Section 21080.69(a)(1), as amended by SB 131, a project that consists exclusively of a day care center not located in a residential area would be exempt from CEQA review. Section 1596.76 of the Health and Safety Code defines a “day care center” as a child day care facility other than a family day care home, including infant centers, preschools, extended day care facilities, and school age childcare centers, as well as childcare centers licensed pursuant to Section 1596.951 of the Health and Safety Code. As discussed above, the proposed project would include construction of a 13,536-sf private preschool/daycare. The City of Morgan Hill 2035 General Plan designates the site as Commercial and the site is zoned CG. The project site is generally surrounded by commercial uses and undeveloped land. As such development of the proposed preschool/daycare would not occur within a residential area. Additionally, the project site is not located within any “natural and protected lands” as defined in PRC Section 21067.5. Therefore, in accordance with SB 131, the proposed project would be statutorily exempt from review under CEQA. However, as described below, the City of Morgan Hill has voluntarily included discussions related to environmental topics that are of common community concern.

Key Environmental Analysis Topics

The statutory exemption pursuant to PRC Section 21080.69(a)(1), for which the proposed project qualifies, is not contingent upon whether the project meets certain environmental criteria, other than the specification that the project cannot be located on natural and protected lands, as defined pursuant to Section 21067.5. Notwithstanding, in the interest of public disclosure, the City of

Morgan Hill has voluntarily provided the following discussion related to noise and transportation, as those are often community concerns.

Noise

In order to assess the potential noise effects associated with the proposed project, an Environmental Noise and Vibration Assessment was prepared by Bolland Acoustical Consultants, Inc. (BAC) (See Attachment A).¹

Noise impacts associated with on-site construction activities were evaluated as part of the Environmental Noise and Vibration Assessment. Section 8.28.040(D) of the Morgan Hill Municipal Code exempts construction noise provided that such activities do not occur during set hours. Specifically, construction activities are prohibited other than between the hours of 7:00 AM to 8:00 PM, Monday through Friday and between the hours of 9:00 AM to 6:00 PM on Saturday. Construction activities may not occur on Sundays or federal holidays. Construction activities associated with the proposed project would occur pursuant to Municipal Code Section 8.28.040(D) and would thereby be exempt from Municipal Code noise level criteria. As shown in Table 20 of the Environmental Noise and Vibration Assessment, construction equipment associated with the proposed project would result in maximum noise levels of approximately 58 decibels (dB) L_{max} to 88 dB L_{max} at nearby commercial and office uses. Such equipment noise levels would be below or within the range of ambient maximum noise levels within the project vicinity during exempted construction activity hours. Nonetheless, depending upon the location, equipment types, and associated duration of construction operations within the project area, the possibility exists that during certain construction phases, on-site project construction noise levels could have the potential to result in short-duration, temporary increases in ambient conditions within the immediate project vicinity. Using the highest maximum noise levels measured during City-exempted construction hours, and the highest predicted construction equipment maximum noise levels, BAC calculated that ambient plus project construction equipment noise level increases could result in maximum noise level increases of 0.1 dB L_{max} to 2.7 dB L_{max} at nearby commercial and office uses. Such an increase would be below the 5 dB significance criteria employed in compliance with General Plan Policy SSI-8.6. Therefore, construction noise associated with the proposed project would not result in a substantial increase to ambient noise levels.

Using the Federal Highway Administration (FHWA) Traffic Noise Model, BAC estimated increases in existing traffic noise levels at nearby sensitive noise receptors along the project area roadway segments as a result of the proposed project. Under existing plus project conditions, BAC identified a maximum traffic noise level increase of 0.4 dB. In addition, under cumulative plus project conditions, BAC identified a maximum traffic noise level increase of 2.9 dB compared to existing levels. Such increases in traffic noise would be below the 3.0 dB significance threshold as established by Morgan Hill General Plan Policy SSI-8.5. As such, under both scenarios, BAC determined that project-generated increases in traffic would not result in a substantial increase in off-site traffic noise levels in the project vicinity.

BAC also evaluated noise level increases as a result of on-site operational noise sources. Project operational noise sources would include noise associated with parking lot movements, building rooftop mechanical equipment, and playground activities. Morgan Hill Municipal Code Section 18.76.090 establishes an exterior noise level standard for commercial land uses of 65 dB L_{eq} . In addition, Morgan Hill General Plan Policy SSI-8.6 states that noise levels produced by stationary noise sources associated with new projects shall be considered significant if they substantially

¹ Bolland Acoustical Consultants, Inc. *Environmental Noise and Vibration Assessment*. September 25, 2025.

exceed existing ambient noise levels. However, Policy SSI-8.6 does not contain numeric increase significance criteria. As such, a 5 dB increase in noise levels above ambient conditions at the nearest sensitive noise receptor was assumed to be significant. BAC determined that parking lot activities would result in a maximum noise level of 55 dB L_{eq} along the property line of APN 726-33-003 at a distance of 60 feet, and a maximum noise level increase of 2.7 dB L_{eq} at APN 726-33-003. With respect to rooftop mechanical equipment, BAC determined that the proposed project would result in a maximum noise level of 55 dB L_{eq} along the property line of APN 726-33-004 at a distance of 100 feet, and a maximum noise level increase of 2.5 dB L_{eq} at APN 726-33-004. Playground activities were anticipated to generate a maximum noise level of 64 dB L_{eq} at a distance of 30 feet, along the property line of APN 726-33-004, and BAC estimated the playground areas would result in a maximum noise level increase of 4.0 dB L_{eq} at APN 726-33-003. When combined, BAC estimated that total on-site operational noise sources would result in a maximum noise level of 65 dB L_{eq} at APN 726-33-004 and would result in a maximum noise level increase of 5.7 dB L_{eq} at APN 726-33-003. As such, combined operational noise levels associated with the project would not exceed the 65 dB L_{eq} noise level standard established by Morgan Hill Municipal Code Section 18.76.090. Although combined project operational noises could result in a noise level increase above 5 dB, the maximum noise level standard refers to outdoor noise levels, and the noise-sensitive space for commercial and office uses is the interior environment. As the nearby commercial and office uses do not include sensitive outdoor areas, they are generally regarded as noise-generating sources and are not considered to be noise sensitive. Therefore, the proposed project would not result in a substantial increase in ambient noise levels as a result of on-site operational noise.

With regard to vibration impacts associated with project construction, Section 18.76.130 of the Morgan Hill Municipal Code states that vibration transmitted through the ground that is discernible without instruments at the lot line of the use is prohibited. However, vibrations from temporary construction, demolition, and vehicles that enter and leave the lot are exempt from the standard. According to BAC, construction activities associated with the proposed project are expected to be below the Federal Transit Administration (FTA) threshold for damage to engineered structures at 25 feet. In addition, except for vibratory roller use, construction related vibration levels are expected to be below FTA thresholds for land uses with primary daytime uses. However, vibratory rollers are typically used for larger paving activities including roadways and large parking lots. Based on the size of the parking area that would require paving, project construction would use smaller equipment such as a plate compactor or walk-behind vibratory roller, which generate substantially less vibration. Therefore, the proposed project would not result in a significant impact regarding construction related vibration.

Vehicle Miles Traveled

Section 15064.3 of the CEQA Guidelines provides specific considerations for evaluating a project's transportation impacts. Pursuant to Section 15064.3, analysis of VMT attributable to a project is the most appropriate measure of transportation impacts, with other relevant considerations consisting of the effects of the project on transit and non-motorized travel. VMT is the total miles of travel by personal motorized vehicles a project is expected to generate in a day. VMT measures the full distance of personal motorized vehicle-trips, with one end within the project site.

In order to assess potential VMT impacts associated with the proposed project, a VMT Assessment was prepared for the proposed project by Hexagon Transportation Consultants, Inc.

(Hexagon) (See Attachment B).² Resolution No. 24-039 was adopted by the Morgan Hill City Council in 2024 and provides screening criteria and thresholds of significance regarding VMT consistent with SB 743. The City of Morgan Hill VMT screening criteria are limited to general land use categories such as residential, office, industrial, and retail. Therefore, the assessment of VMT for non-standard land uses such as the proposed preschool requires a conversion to an equivalent amount of one of the general land uses that has similar trip-generating and trip-origin/destination characteristics.

The number of daily trips, trip origination/destination, and the resulting VMT associated with the proposed preschool would be similar to that of local-serving retail, because the preschool would primarily serve families living in Morgan Hill. As such, the VMT Assessment based its findings on a conversion of the proposed preschool to an equivalent amount of local-serving retail space, with estimated daily trips compared through the use of trip rates published by the Institute of Transportation Engineers (ITE) for the proposed daycare center and typical retail uses.

The VMT Assessment estimated daily site-generated vehicular traffic for the proposed daycare center based on trip generation rates compiled in the ITE Trip Generation Manual, 11th Edition. Rates for "Day Care Center" (ITE Land Use 565) were used to estimate the trips generated by the proposed project. Based on the trip generation rate and the project size, the proposed daycare center is estimated to generate 867 new daily vehicle trips.

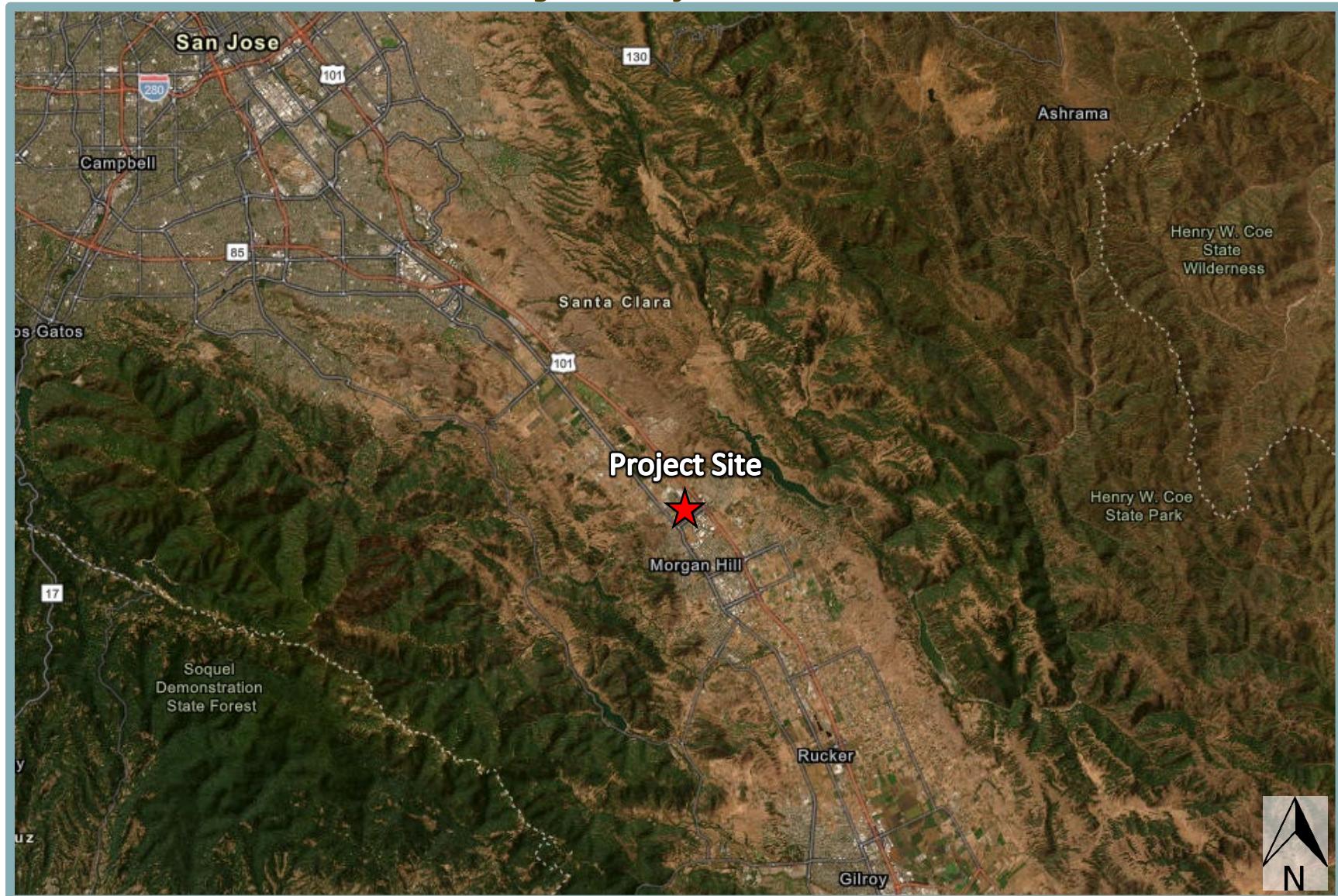
The results of the conversion of the proposed preschool to an equivalent amount of retail/commercial space indicated that the proposed project would generate net new daily trips equivalent to that of an approximately 16,000-sf retail development. The City of Morgan Hill determined that facilities less than 50,000-sf in size are considered to be local-serving retail developments. Therefore, the daily trips and resulting VMT estimated to be generated by the proposed project would be equivalent to that generated by retail uses of less than 50,000 square feet in size, and the project may be presumed to be a local-serving facility. As such, the proposed project would meet the adopted City of Morgan Hill VMT screening criteria. In addition, the Technical Advisory on Evaluating Transportation Impacts in CEQA (Technical Advisory) published by the Governor's Office of Planning and Research (OPR) (now known as the Office of Land Use and Climate Innovation [LCI]) suggests that by adding retail opportunities into the urban fabric and, thereby, improving retail destination proximity, local-serving retail development tends to shorten trips and reduce VMT. Furthermore, the nearest existing preschool facilities are located more than one mile south of the project site. As such, the location of the proposed project would provide a proximate location for residents to a preschool, thus resulting in shorter trips and subsequent reduction in VMT generated by City residents for the purposes of traveling to a preschool. Overall, as the proposed project has trip-generating characteristics of a local-serving retail facility and meets the City of Morgan Hill screening criteria, the project would not result in a significant effect related to VMT.

If you have any questions regarding the contents of this document, please do not hesitate to contact me at (916) 372-6100, or via email at npappani@raneymanagement.com.

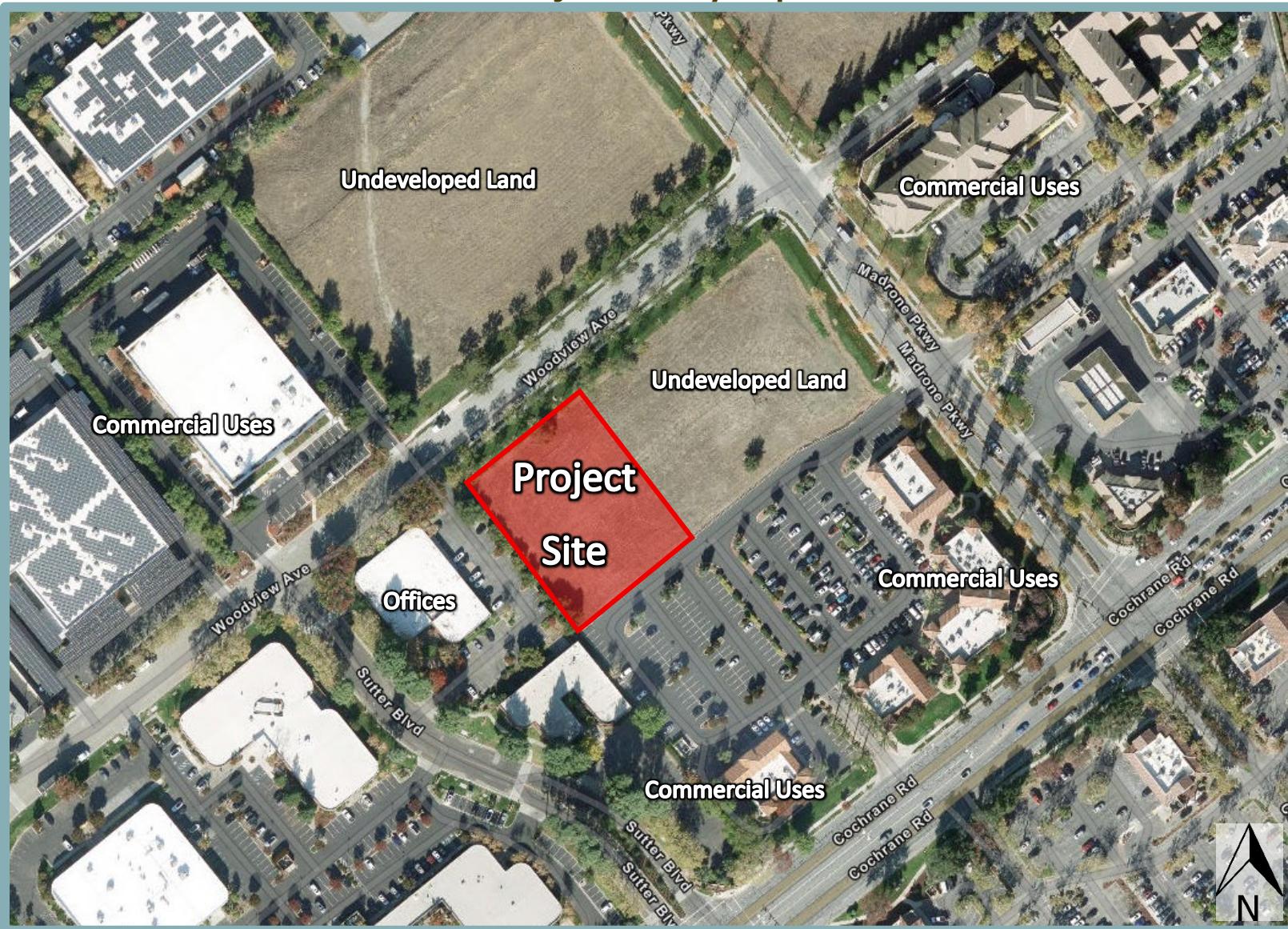
Thank you,

² Hexagon Transportation Consultants, Inc. *VMT Assessment for the Proposed Primrose Preschool Development in Morgan Hill, California*. October 14, 2025.

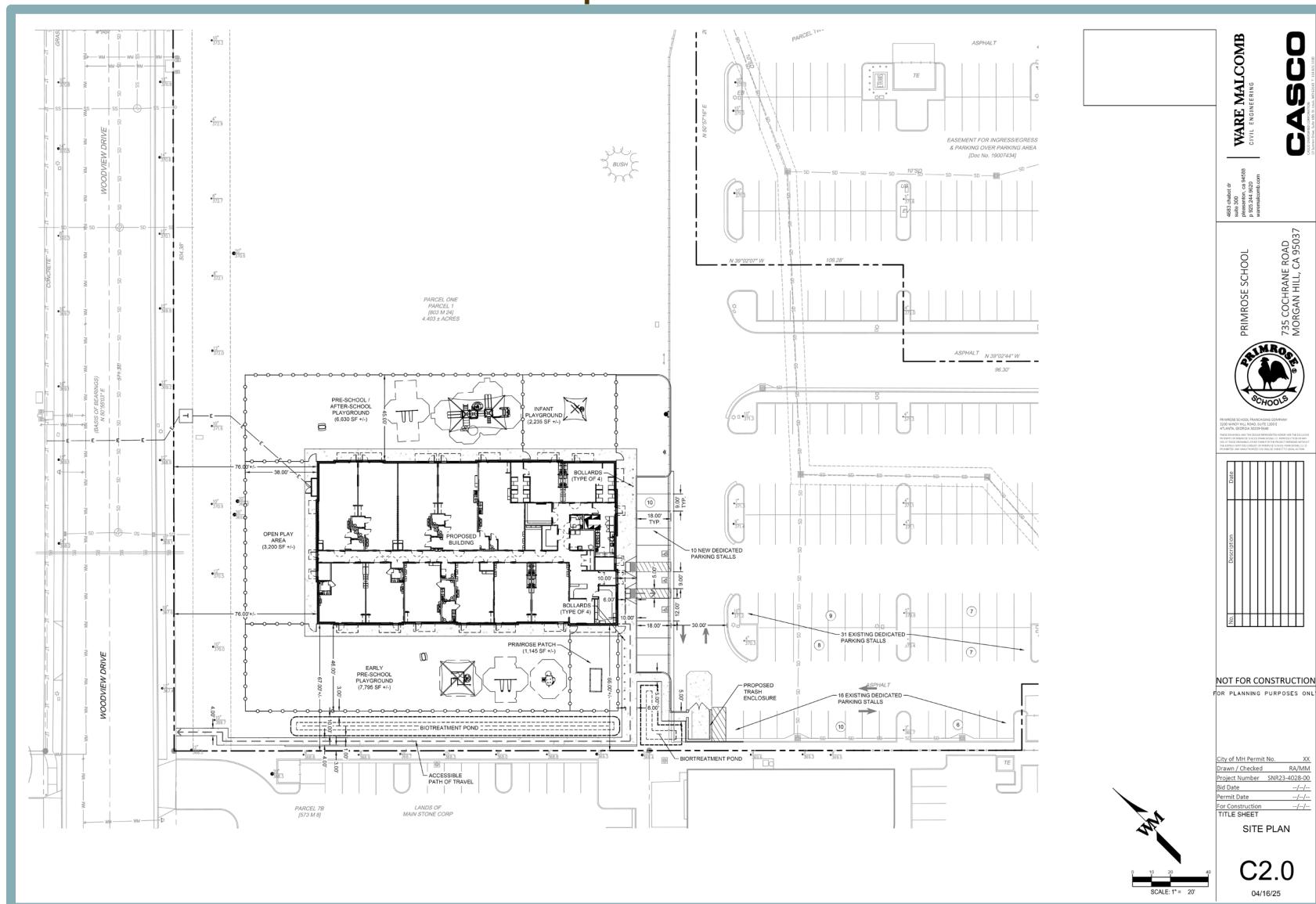
Nick Pappani
Vice President



1501 Sports Drive, Suite A
Sacramento, CA 95834
Office: (916) 372-6100
www.raneymanagement.com


Attachments:

Attachment A – Environmental Noise & Vibration Assessment
Attachment B – VMT Assessment


Figure 1
Regional Project Location

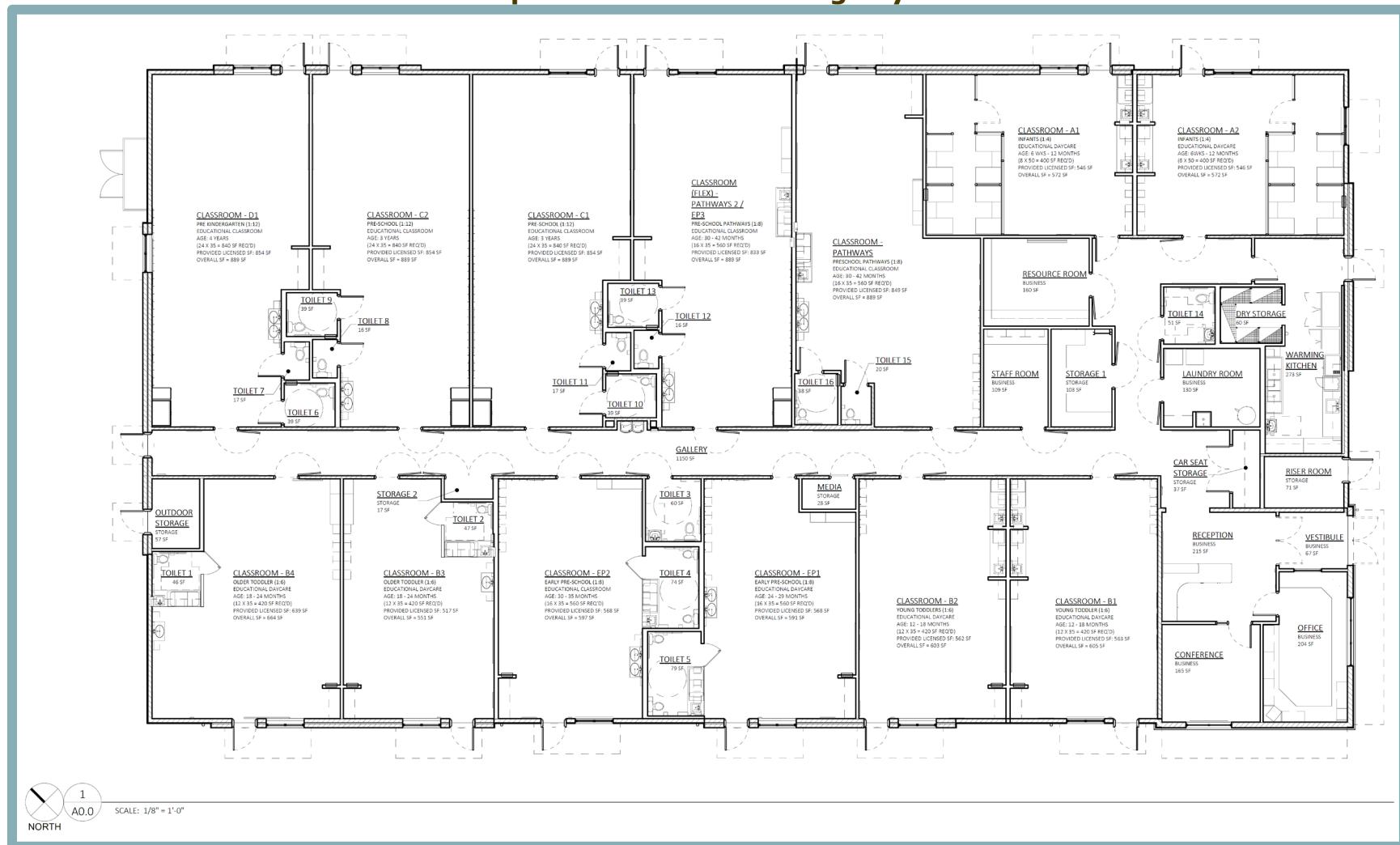

Figure 2
Project Vicinity Map

Figure 3
Proposed Site Plan

Figure 4
Proposed Interior Building Layout

Attachment A

**Environmental Noise & Vibration
Assessment**

Environmental Noise & Vibration Assessment

Primrose School

Morgan Hill, California

BAC Job #2025-106

Prepared For:

Raney Planning & Management, Inc.

Attn: Bryce Madden
1501 Sports Drive, Suite A
Sacramento, CA 95834

Prepared By:

Bollard Acoustical Consultants, Inc.

Dario Gotchet
Vice President
Board Elected Member, INCE-USA (ID#20964)

November 13, 2025

CEQA Checklist

NOISE AND VIBRATION – Would the Project Result in:	Potentially Significant Impact	Less than Significant with Mitigation	Less Than Significant Impact	No Impact
a) Generation of substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			X	
b) Generation of excessive groundborne vibration or groundborne noise levels?			X	
c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				X

Introduction

The proposed Primrose School (project) is located at 735 Cochrane Road in Morgan Hill, California (APN: 726-33-029). The project proposes the construction and operation of a private preschool/day care that would serve a maximum of 212 students. Land uses in the immediate project vicinity include undeveloped land to the north across Woodview Avenue, and commercial/office uses in all other directions. The project area and adjacent land uses with aerial imagery are shown in Figure 1. The project site plan is presented in Figure 2.

The purposes of this assessment are to quantify the existing noise and vibration environments, identify potential noise and vibration impacts resulting from the project, identify appropriate mitigation measures, and provide a quantitative and qualitative analysis of impacts associated with the project. Specifically, impacts are identified if project-related activities would cause a substantial increase in ambient noise levels at existing uses in the project vicinity, or if traffic or project-generated noise or vibration levels would exceed applicable federal, state, or City of Morgan Hill standards at nearby existing land uses.

Noise and Vibration Fundamentals

Noise

Noise is often described as unwanted sound. Sound is defined as any pressure variation in air that the human ear can detect. If the pressure variations occur frequently enough (at least 20 times per second), they can be heard and are designated as sound. The number of pressure variations per second is called the frequency of sound and is expressed as cycles per second, or Hertz (Hz). Definitions of acoustical terminology are provided in Appendix A.

Measuring sound directly in terms of pressure would require a very large and awkward range of numbers. To avoid this, the decibel scale was devised. The decibel scale uses the hearing threshold (20 micropascals of pressure) as a point of reference, defined as 0 dB. Other sound pressures are then compared to the reference pressure, and the logarithm is taken to keep the numbers in a practical range. The decibel scale allows a million-fold increase in pressure to be expressed as 120 dB. Another useful aspect of the decibel scale is that changes in decibel levels correspond closely to human perception of relative loudness. Noise levels associated with common noise sources are provided in Figure 3.

The perceived loudness of sounds is dependent upon many factors, including sound pressure level and frequency content. However, within the usual range of environmental noise levels, perception of loudness is relatively predictable and can be approximated by filtering the frequency response of a sound level meter by means of the standardized A-weighting network. There is a strong correlation between A-weighted sound levels (expressed as dBA) and community response to noise. For this reason, the A-weighted sound level has become the standard tool of environmental noise assessment. All noise levels reported in this section are in terms of A-weighted levels.

Community noise is commonly described in terms of the ambient noise level, which is defined as the all-encompassing noise level associated with a given noise environment. A common statistical tool to measure the ambient noise level is the average, or equivalent, sound level (L_{eq}). The L_{eq} is the foundation of the day-night average noise descriptor, DNL (or L_{dn}), and shows very good correlation with community response to noise.

The Day-Night Average sound level (DNL) is based upon the average noise level over a 24-hour day, with a +10-decibel weighting applied to noise occurring during nighttime (10:00 p.m. to 7:00 a.m.) hours. The nighttime penalty is based upon the assumption that people react to nighttime noise exposures as though they were twice as loud as daytime exposures. Because DNL represents a 24-hour average, it tends to disguise short-term variations in the noise environment. DNL-based noise standards are commonly used to assess noise impacts associated with traffic, railroad, and aircraft noise sources.

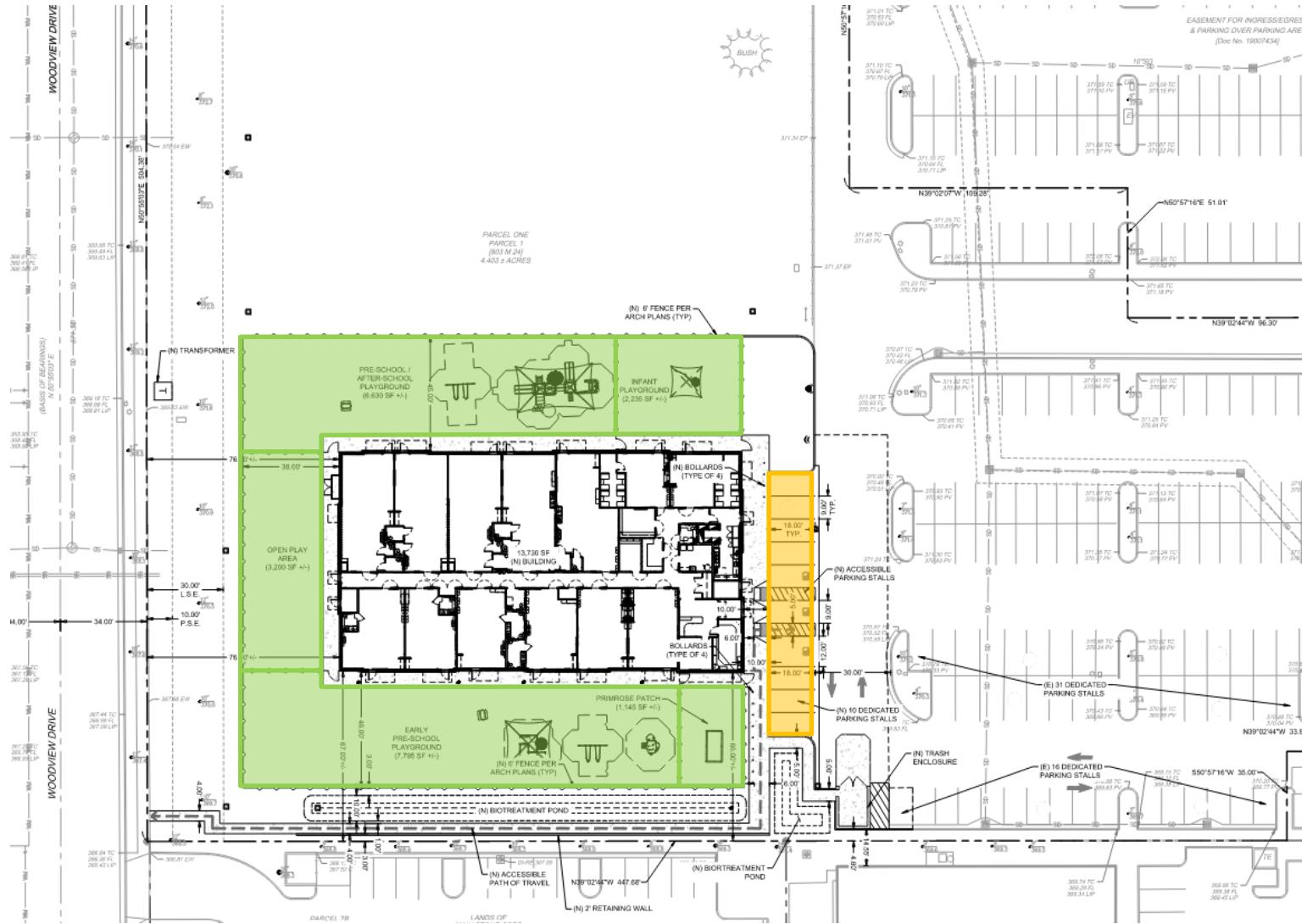
Vibration

Vibration is like noise in that it involves a source, a transmission path, and a receiver. While vibration is related to noise, it differs in that noise is generally considered to be pressure waves transmitted through air, while vibration is usually associated with transmission through the ground or structures. As with noise, vibration consists of an amplitude and frequency. A person's response to vibration will depend on their individual sensitivity as well as the amplitude and frequency of the source.

Vibration can be described in terms of acceleration, velocity, or displacement. A common practice is to monitor vibration in terms of velocity in inches per second peak particle velocity (IPS, PPV) or root-mean-square (VdB, RMS). Standards pertaining to perception as well as damage to structures have been developed for vibration in terms of peak particle velocity as well as RMS velocities. As vibrations travel outward from the source, they excite the particles of rock and soil through which they pass and cause them to oscillate. Differences in subsurface geologic conditions and distance from the source of vibration will result in different vibration levels characterized by different frequencies and intensities. In all cases, vibration amplitudes will decrease with increasing distance. The maximum rate, or velocity of particle movement, is the commonly accepted descriptor of the vibration "strength". Vibration can be felt or heard well below the levels that produce any damage to structures. The duration of the event influences human response, as does frequency. Generally, as duration and vibration frequency increase, the potential for adverse human response increases.

According to the Transportation and Construction-Induced Vibration Guidance Manual (Caltrans, June 2004), operation of construction equipment and construction techniques generate ground vibration. Traffic traveling on roadways can also be a source of such vibration. At high enough amplitudes, ground vibration has the potential to damage structures and/or cause cosmetic damage. Ground vibration can also be a source of annoyance to individuals who live or work close to vibration-generating activities. However, traffic rarely generates vibration amplitudes high enough to cause structural or cosmetic damage.

Legend


- Parcel Boundary (Approximate Location)
- Primrose School Project Area (Approximate Location)
- Short-Term Noise Survey Site
- Long-Term Noise & Short-Term Vibration Survey Site

Scale (Feet)
0 100 200

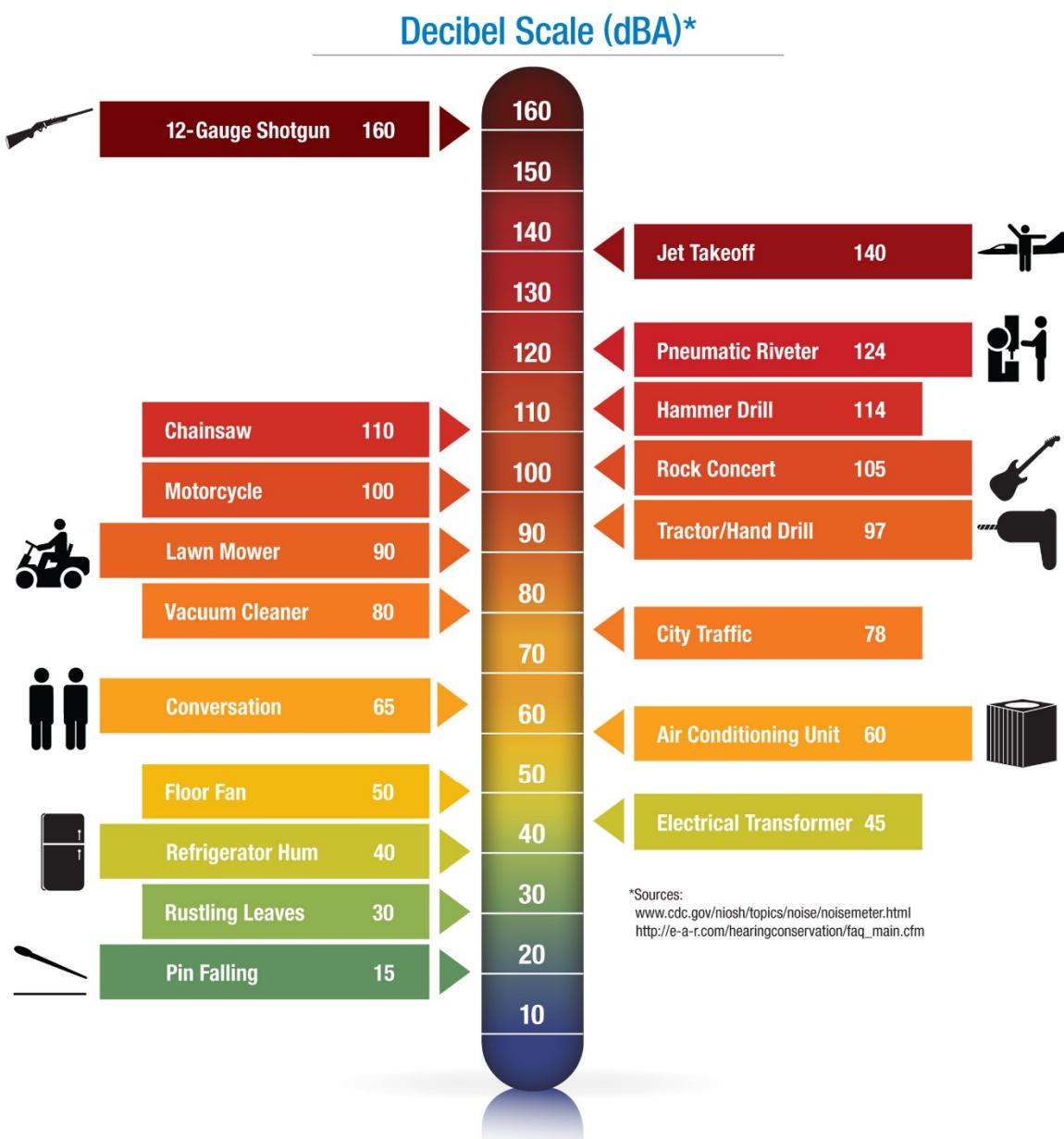
Primrose School
Morgan Hill, California

Project Area

Figure 1

Legend

- Outdoor Play Areas
- School Parking Area (New Stalls)


Primrose School
Morgan Hill, California

Project Site Plan

Figure 2

BOLLARD
Acoustical Consultants

Figure 3
Noise Levels Associated with Common Noise Sources

Regulatory Setting: Noise and Vibration Exposure Criteria

Federal

There are no federal noise or vibration criteria which would be directly applicable to this project. However, the City of Morgan Hill does not currently have adopted numeric standards for groundborne vibration. As a result, the following federal noise criteria was applied to the project.

Federal Transit Administration

Vibration impact criteria developed by the Federal Transit Administration (FTA) were applied to the project. The FTA criteria applicable to damage and annoyance from vibration typically associated with construction activities are presented in Tables 1 and 2.

Table 1
FTA Criteria for Assessing Vibration Damage to Structures

Building Category	Level (VdB) ¹
I. Reinforced-concrete, steel or timber (no plaster)	102
II. Engineered concrete and masonry (no plaster)	98
III. Non-engineered timber and masonry buildings	94
IV. Buildings extremely susceptible to vibration damage	90
¹ RMS velocity in decibels (VdB) re 1 micro-inch/second	

Source: *Federal Transit Administration (FTA) Noise and Vibration Manual, Table 12-3*

Table 2
Groundborne Vibration Impact Criteria for General Assessment

Land Use Category	Impact Levels (VdB)		
	Frequent Events ^a	Occasional Events ^b	Infrequent Events ^c
Category 1: Buildings where vibration would interfere with interior ops.	65 ^d	65 ^d	65 ^d
Category 2: Residences and buildings where people normally sleep	72	75	80
Category 3: Institutional land uses with primarily daytime uses	75	78	83

a. "Frequent Events" is defined as more than 70 vibration events of the same source per day.
 b. "Occasional Events" is defined as between 30 and 70 vibration events of the same source per day.
 c. "Infrequent Events" is defined as fewer than 30 vibration events of the same source per day.
 d. This criterion limit is based on levels that are acceptable for most moderately-sensitive equipment such as optical microscopes. Vibration-sensitive manufacturing or research will require detailed evaluation to define the acceptable vibration levels.

Source: *Federal Transit Administration, Transit Noise Impact and Vibration Assessment, May 2006*

State of California

California Environmental Quality Act (CEQA)

The State of California has established regulatory criteria that are applicable to this assessment. Specifically, Appendix G of the State of California Environmental Quality Act (CEQA) Guidelines are used to assess the potential significance of impacts pursuant to local General Plan policies,

Municipal Code standards, or the applicable standards of other agencies. According to Appendix G of the CEQA guidelines, the project would result in a significant noise or vibration impact if the following occur:

- A. Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or other applicable standards of other agencies.
- B. Generation of excessive groundborne vibration or groundborne noise levels.
- C. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, the project would expose people residing or working in the project area to excessive noise levels.

It should be noted that audibility is not a test of significance according to CEQA. If this were the case, any project which added any audible amount of noise to the environment would be considered significant according to CEQA. Because every physical process creates noise, the use of audibility alone as significance criteria would be unworkable. CEQA requires a substantial increase in noise levels before noise impacts are identified, not simply an audible change.

Local

Morgan Hill 2035 General Plan

The Safety, Services, and Infrastructure Element of the Morgan Hill 2035 General Plan contains goals and policies to ensure that city residents are not subjected to noise beyond acceptable levels. The General Plan goals and policies which are applicable to the project are reproduced below.

GOAL SSI-8

Prevention of noise from interfering with human activities or causing health problems.

Policies

SSI-8.1 Exterior Noise Level Standards. Require new development projects to be designed and constructed to meet acceptable exterior noise level standards (Table 3 of this report), as follows:

- Apply a maximum exterior noise level of 60 dBA DNL in residential areas where outdoor use is a major consideration (e.g., backyards in single-family housing developments and recreation areas in multi-family housing projects). Where the City determines that providing a DNL of 60 dBA or lower cannot be achieved after the application of reasonable and feasible mitigation, a DNL of 65 dBA may be permitted.
- Indoor noise levels should not exceed a DNL of 45 dBA in new residential housing units.

- Noise levels in new residential development exposed to an exterior DNL of 60 dBA or greater should be limited to a maximum instantaneous noise level (e.g., trucks on busy streets, train warning whistles) in bedrooms of 50 dBA. Maximum instantaneous noise levels in all other habitable rooms should not exceed 55 dBA. The maximum outdoor noise level for new residences near the railroad shall be 70 dBA DNL, recognizing that train noise is characterized by relatively few loud events.

SSI-8.2 **Impact Evaluation.** The impact of a proposed development project on existing land uses should be evaluated in terms of the potential for adverse community response based on significant increase in existing noise levels, regardless of compatibility guidelines.

SSI-8.3 **Commercial and Industrial Noise Level Standards.** Evaluate interior noise levels in commercial and industrial structures on a case-by-case basis based on the use of the space.

SSI-8.4 **Office Noise Level Standards.** Interior noise levels in office buildings should be maintained at 45 dB L_{eq} (hourly average) or less, rather than 45 dB DNL (daily average).

SSI-8.5 **Traffic Noise Level Standards.** Consider noise level increases resulting from traffic associated with new projects significant if: a) the noise level increase is 5 dBA DNL or greater, with a future noise level of less than 60 dBA DNL, or b) the noise level increase is 3 dBA DNL or greater, with a future noise level of 60 dBA DNL or greater.

SSI-8.6 **Stationary Noise Level Standards.** Consider noise levels produced by stationary noise sources associated with new projects significant if they substantially exceed existing ambient noise levels.

SSI-8.7 **Other Noise Sources.** Consider noise levels produced by other noise sources (such as ballfields) significant if an acoustical study demonstrates they would substantially exceed ambient noise levels.

SSI-8.9 **Site Planning and Design.** Require attention to site planning and design techniques other than sound walls to reduce noise impacts, including a) installing earth berms, b) increasing the distance between the noise source and the receiver, c) using non-sensitive structures such as parking lots, utility areas, and garages to shield noise-sensitive areas, d) orienting buildings to shield outdoor spaces from the noise source, and e) minimizing the noise at its source.

Table 3
State of California Land Use Compatibility Guidelines for Community Noise Environments

Land Uses	CNEL (dBA)					
	55	60	65	70	75	80
Residential – Low Density Single-Family, Duplex, Mobile Homes					75	
Residential – Multiple-Family				70	75	
Transient Lodging, Motels, Hotels					75	80
Schools, Libraries, Churches, Hospitals, Nursing Homes				70	75	80
Auditoriums, Concert Halls, Amphitheaters					75	
Sports Arena, Outdoor Spectator Sports					75	
Playgrounds, Neighborhood Parks					75	
Golf Courses, Riding Stables, Water Recreation, Cemeteries					75	
Office Buildings, Businesses, Commercial and Professional				75	80	
Industrial, Manufacturing, Utilities, Agricultural					75	80

Normally Acceptable:
Specified land use is satisfactory based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.

Normally Unacceptable:
New construction or development should generally be discouraged. If new construction does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

Conditionally Acceptable:
New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and the needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice.

Clearly Unacceptable:
New construction or development generally should not be undertaken.

Source: Governor's Office of Planning and Research, General Plan Guidelines 2003.

Morgan Hill Municipal Code

The provisions of the Morgan Hill Municipal Code which would be most applicable to this project are reproduced below.

Chapter 8.28 of the Municipal Code provides an enumeration of unlawful noise sources (i.e., animals, birds, auto body repairs, blowers, fans, combustion engines, construction activities, exhausts, loudspeakers). Chapter 8.28 does not, however, provide quantitative performance standards. Section 8.28.040(D) exempts construction noise provided the activities are limited to a specific time frame. Section 8.28.040(D) is reproduced below:

"Construction activities" are defined as including but not limited to excavation, grading, paving, demolition, construction, alteration or repair of any building, site, street or highway, delivery, or removal of construction material to a site, or movement of construction materials on a site. Construction activities are prohibited other than between the hours of seven a.m. and eight p.m., Monday through Friday and between the hours of nine a.m. to six p.m. on Saturday. Construction activities may not occur on Sundays or federal holidays. No third person, including but not limited to landowners, construction company owners, contractors,

subcontractors, or employers, shall permit or allow any person working on construction activities which are under their ownership, control, or direction to violate this provision.

Section 18.76.090 of the Municipal Code establishes acceptable noise level criteria for non-transportation noise sources. The City's quantitative exterior noise standards are provided below in Table 4. According to conversations with City of Morgan Hill planning staff in the preparation of noise assessments in previous years, the Table 4 standards are interpreted as being hourly average (L_{eq}) noise level standards.

Table 4
Noise Level Performance Standards

Receiving Land Use	Maximum Noise Level at Lot Line of Receiving Use ^{1,2}
Industrial and Wholesale	70 dBA
Commercial	65 dBA
Residential or Public/Quasi Public	60 dBA

¹ The planning commission may allow an additional 5 dBA noise level at the lot line if the maximum noise level shown above cannot be achieved with reasonable and feasible mitigation.

² Noise standards shown above do not apply to noise generated by vehicle traffic in the public right-of way or from temporary construction, demolition, and vehicles that enter or leave the site of the noise-generating use (e.g., construction equipment, trains, trucks).

Source: *Morgan Hill Municipal Code, Section 18.76.090, Table 18.76-1*

Finally, Municipal Code Section 18.76.130 states that vibration transmitted through the ground that is discernible without instruments at the lot line of the establishment or use is prohibited. However, vibrations from temporary construction, demolition, and vehicles that enter and leave the lot (e.g., construction equipment, trains, trucks, etc.) are exempt from this standard.

Environmental Setting: Existing Noise and Vibration Environment

Noise-Sensitive Land Uses in the Project Vicinity

Noise-sensitive land uses are generally defined as locations where people reside or where the presence of unwanted sound could adversely affect the primary intended use of the land. Places where people live, sleep, recreate, worship, and study are generally considered to be sensitive to noise because intrusive noise can be disruptive to these activities.

The City of Morgan Hill Municipal Code contains established noise level criteria for residential and commercial/office land uses affected by non-transportation noise sources, such as those associated with proposed on-site activities. Existing residential land uses have not been identified within the immediate vicinity of the project. As mentioned previously, the immediate project vicinity consists of commercial/ office uses. The project area and surrounding commercial/office land uses are shown in Figure 1.

Existing Overall Ambient Noise Environment within the Project Vicinity

The existing ambient noise environment within the project vicinity is defined primarily by noise from traffic on Cochrane Road and Madrone Parkway, and by activities at nearby commercial/office uses. To generally quantify existing ambient noise environment within the project vicinity, BAC conducted long-term (continuous) ambient noise level measurements August 29 and September 1-3, 2025, at the location shown in Figure 1 (site LT-1). Additionally, short-term (6-hour) ambient noise level surveys were conducted on September 4 and 5, 2025, at the locations shown in Figure 1 (sites ST-1 through ST-5). The noise survey locations are shown in Figure 1. Photographs of the noise survey locations are provided in Appendix B.

Larson Davis Laboratories (LDL) precision integrating (Type 1) sound level meters were used to complete the noise level measurements. The meters were calibrated immediately before use with an LDL Model CA200 acoustical calibrator to ensure the accuracy of the measurements. The equipment used meets all specifications of the American National Standards Institute requirements for Type 1 sound level meters (ANSI S1.4). The results of the long-term ambient noise level survey are contained in Appendices C and D and are summarized below in Table 5. A summary of the short-term noise level survey results is presented in Table 6.

Table 5
Summary of Long-Term Ambient Noise Survey Results – August 29, September 1-3, 2025

Survey Site ¹	Date	DNL (dB)	Average Measured Hourly Noise Levels (dB) ²			
			Daytime ³		Nighttime ³	
LT-1: Along southwest project property line	Friday, August 29	56	51	65	50	63
	Monday, September 1	56	50	64	49	62
	Tuesday, September 2	59	55	68	52	64
	Wednesday, September 3	57	53	66	50	59

¹ Long-term ambient noise survey location is identified in Figure 1. Survey site photos are presented in Appendix B.
² Detailed summaries of the noise monitoring results are provided in Appendices C and D.
³ Daytime: 7:00 AM to 10:00 PM | Nighttime: 10:00 PM to 7:00 AM

Source: BAC 2025

Table 6
Summary of Short-Term Ambient Noise Survey Results – September 4 & 5, 2025

Survey Site ¹	Date	Time Period	Average Measured Noise Level (dBA)	
			L _{eq}	L _{max}
ST-1: Northwest project boundary near Woodview Ave	Thursday, September 4	3:00 p.m. to 4:00 p.m.	54	74
		4:00 p.m. to 5:00 p.m.	53	69
		5:00 p.m. to 6:00 p.m.	53	67
	Friday, September 5	8:00 a.m. to 9:00 a.m.	53	73
		9:00 a.m. to 10:00 a.m.	51	69
		10:00 a.m. to 11:00 a.m.	51	70
		Average	53	70
ST-2: Southwest project area along property line	Thursday, September 4	3:00 p.m. to 4:00 p.m.	52	72
		4:00 p.m. to 5:00 p.m.	56	81
		5:00 p.m. to 6:00 p.m.	54	76
	Friday, September 5	8:00 a.m. to 9:00 a.m.	58	88
		9:00 a.m. to 10:00 a.m.	52	66
		10:00 a.m. to 11:00 a.m.	53	69
		Average	54	75
ST-3: Along boundary of project parcel and APN: 726-33-030	Thursday, September 4	3:00 p.m. to 4:00 p.m.	54	74
		4:00 p.m. to 5:00 p.m.	55	71
		5:00 p.m. to 6:00 p.m.	55	69
	Friday, September 5	8:00 a.m. to 9:00 a.m.	56	74
		9:00 a.m. to 10:00 a.m.	53	69
		10:00 a.m. to 11:00 a.m.	54	76
		Average	55	72
ST-4: APN: 726-33-031 near building facade	Thursday, September 4	3:00 p.m. to 4:00 p.m.	59	85
		4:00 p.m. to 5:00 p.m.	57	76
		5:00 p.m. to 6:00 p.m.	59	78
	Friday, September 5	8:00 a.m. to 9:00 a.m.	60	86
		9:00 a.m. to 10:00 a.m.	62	83
		10:00 a.m. to 11:00 a.m.	59	87
		Average	59	83
ST-5: APN: 726-033-031 near building facade	Thursday, September 4	3:00 p.m. to 4:00 p.m.	60	81
		4:00 p.m. to 5:00 p.m.	63	89
		5:00 p.m. to 6:00 p.m.	59	76
	Friday, September 5	8:00 a.m. to 9:00 a.m.	63	84
		9:00 a.m. to 10:00 a.m.	59	79
		10:00 a.m. to 11:00 a.m.	59	78
		Average	61	82

¹ Short-term ambient noise survey location is shown in Figure 1.

Source: BAC 2025

The BAC noise measurement locations were specifically selected to capture the ambient level environments at the existing commercial/office uses located on APN: 726-33-004 (site LT-1), APN: 726-33-005 (site ST-1), APN: 726-33-003 (site ST-2), APN: 726-33-030 (site ST-3), and APN: 726-33-031 (sites ST-4 and ST-5).

Existing Ambient Vibration Environment within the Project Vicinity

During BAC site visits for the ambient noise level survey, vibration levels were below the threshold of perception within the project area and vicinity. Nonetheless, to quantify existing vibration levels in the project vicinity, BAC conducted a short-term (3-hour) vibration survey on September 5th, 2025, at site LT-1 in Figure 1. Photographs of the vibration survey equipment are provided in Appendix B. A Larson-Davis Laboratories Model LxT precision integrating sound level meter equipped with a vibration transducer was used to complete the measurements. The results are summarized in Table 7.

Table 7
Summary of Short-Term Ambient Vibration Survey Results – September 5th, 2025

Survey Site	Time Period	Highest Measured Vibration Level (VdB)
LT-1: Along southwest project property line	9:00 a.m. to 10:00 a.m.	44
	10:00 a.m. to 11:00 a.m.	49
	11:00 a.m. to 12:00 p.m.	58

Source: BAC 2025

Existing Traffic Noise Levels along the Project Area Roadway Network

To predict traffic noise levels along existing roadway networks, modelling is commonly used rather than monitoring. The FHWA Traffic Noise Model (FHWA-RD-77-108) was used to quantify existing traffic noise levels at the existing sensitive land uses nearest to the project area roadway network. The FHWA Model was also used to quantify the distances to the 60, 65 and 70 dB DNL traffic noise contours for these roadways. The FHWA Model predicts hourly average (L_{eq}) values for free-flowing traffic conditions. Estimates of the hourly distribution of traffic for a typical 24-hour period were used to develop day-night average (DNL) values from L_{eq} values.

Existing (2023) traffic data in the form of AM and PM peak hour intersection turning movements were obtained from the traffic impact analysis prepared by the project transportation consultant (Hexagon Transportation Consultants, Inc.). Those data were converted to Average Daily Traffic (ADT) segment volumes by applying a factor of 5 to the sum of AM and PM peak hour conditions. Other inputs were derived from BAC field observations, and file data for similar roadways. The existing traffic noise levels at the distances representing the nearest noise-sensitive land uses to the project area roadways and distances from the centerlines of selected roadways to the 60 dB, 65 dB and 70 dB DNL contours are summarized in Table 8. Appendix E contains the FHWA Model inputs for Existing 2023 No Project conditions.

Table 8
Existing Traffic Noise Levels at Nearest Sensitive Receptors and Distances to DNL Contours

#	Roadway	Segment Description	DNL at Nearest Sensitive Receptor	Distance to Contour (ft)		
				70 dB DNL	65 dB DNL	60 dB DNL
1	Cochrane Rd	West of Woodview Ave	63	48	103	223
2	Cochrane Rd	Woodview Ave to Sutter Blvd	67	60	129	278
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	68	72	155	333
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	67	62	134	289
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	68	74	159	343
6	Cochrane Rd	East of US 101 NB Ramps	67	62	134	290
7	Woodview Ave	Cochrane Rd to Sutter Blvd	54	8	17	38
8	Skipper Ln	South of Cochrane Rd	49	4	8	17
9	Sutter Blvd	Cochrane Rd to Woodview Ave	60	21	46	99
10	Sutter Blvd	South of Cochrane Rd	48	4	8	17
11	Madrone Pkwy	Cochrane Rd to Project Driveway	58	16	35	75
12	Madrone Pkwy	Project Driveway to Woodview Ave	59	19	40	87
13	Madrone Pkwy	North of Woodview Ave	58	16	34	74
14	US 101 SB Ramps	South of Cochrane Rd	67	62	134	288
15	US 101 NB Ramps	North of Cochrane Rd	67	65	140	302

Source: FHWA-RD-77-108, Hexagon and BAC

Impacts and Mitigation Measures

Thresholds of Significance

For the purposes of this report, a noise and vibration impact is considered significant if the project would result in:

- Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or other applicable standards of other agencies; or
- Generation of excessive groundborne vibration or groundborne noise levels; or
- For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, the project would expose people residing or working in the project area to excessive noise levels.

The closest airport to the project area has been identified as San Martin Airport located in excess of five miles to the south. Because the project area is not within the vicinity of a private airstrip, an airport land use plan, or within two miles of a public airport, the last threshold listed above is

not relevant and is not discussed further as there would be no potential for airport-related impacts associated with the project.

The following criteria established by the Federal Transit Administration (FTA), Morgan Hill General Plan, and Morgan Hill Municipal Code were used to evaluate the significance of environmental noise and vibration resulting from the project:

- A significant noise impact would be identified if the project would expose persons to or generate noise levels that would exceed applicable noise criteria presented in the Morgan Hill General Plan or Morgan Hill Municipal Code.
- A significant impact would be identified if project-generated off-site traffic, on-site operations, or on-site construction activities would substantially increase noise levels at existing receptors in the vicinity. A substantial increase from project-generated off-site traffic noise levels would be identified relative to the numeric increase significance criteria contained in Policy SSI-8.5 of the Morgan Hill General Plan.

General Plan Policy SSI-8.6 states that noise levels produced by stationary noise sources associated with new projects shall be considered significant if they substantially exceed existing ambient noise levels. However, Policy SSI-8.6 does not contain numeric increase significance criteria. In terms of determining the temporary noise increase due to project on-site operations and construction activities (non-transportation noise sources) at existing noise-sensitive receptors in the project vicinity, an impact would occur if those activities would noticeably increase ambient noise levels above background levels at those locations. The threshold of perception of the human ear is approximately 3 to 5 dB – a 5 dB change is considered to be clearly noticeable. For the analysis of project on-site operations and construction activity noise level increases at nearby noise-sensitive receptors, a noticeable increase in ambient noise levels is assumed to occur where those activities would result in an increase by 5 dB or more over existing ambient noise levels.

- A significant impact would be identified if project on-site construction or on-site operations would expose existing receptors to excessive groundborne vibration levels. Specifically, an impact would be identified if groundborne vibration levels due to these sources would exceed FTA vibration impact criteria.

Noise Impacts Associated with Project-Generated Increases in Off-Site Traffic

With development of the project, traffic volumes on the local roadway network will increase. Those increases in daily traffic volumes will result in a corresponding increase in traffic noise levels at existing uses located along those roadways. Impacts 1 and 2 evaluate increases in off-site traffic noise levels which would result from the project.

Pursuant to Policy SSI-8.5 of the Morgan Hill General Plan, traffic noise level increases from new projects are considered significant if: a) the noise level increase is 5 dB DNL or greater, with a future noise level of less than 60 dB DNL, or b) the noise level increase is 3 dB DNL or greater, with a future noise level of 60 dB DNL or greater.

Impact 1: Increases in Existing Traffic Noise Levels due to the Project

The FHWA Traffic Noise Model (FHWA-RD-77-108) was used to quantify increases in existing traffic noise levels at the existing sensitive land uses nearest to the project area roadway network. The FHWA Model predicts hourly L_{eq} values for free-flowing traffic conditions. Estimates of the hourly distribution of traffic for a typical 24-hour period were used to develop DNL values from L_{eq} values.

Traffic data in the form of AM and PM peak hour intersection turning movements were obtained from the project transportation consultant (Hexagon). Those data were converted to Average Daily Traffic (ADT) segment volumes by applying a factor of 5 to the sum of AM and PM peak hour conditions. Other inputs were derived from BAC field observations, and file data for similar roadways. Appendices E and F contain the FHWA Model inputs for Existing 2023 No Project and Existing 2023 Plus Project conditions, respectively. The Existing 2023 No Project and Existing 2023 Plus Project traffic noise levels at the distances representing the nearest existing sensitive land uses to the roadway segments analyzed within the project roadway network are summarized in Table 9. Table 9 also shows the thresholds for determination of a significant traffic noise increase, whether the roadway segment contains sensitive uses, and whether significant noise impacts are identified for each segment. A significant impact would be identified only along segments where the project-related traffic noise level increase would exceed applicable significance threshold and where sensitive receptors are present along the roadway segment.

It should be noted that the FHWA Model predictions presented in Table 9 are based on inputs that include peak hour traffic volumes, day/night distribution and truck type percentages (e.g., medium and heavy trucks), vehicle speed, and distance from roadway centerlines. The FHWA Model does not account for non-traffic ambient noise sources such as nearby natural sounds or other anthropogenic noise sources within an area.

Table 9
Predicted Traffic Noise Level Increases at Existing Sensitive Receptors – Existing 2023 vs. Existing 2023 + Project Conditions

#	Roadway	Segment Description	Predicted DNL (dB)			Significance Threshold ¹	Threshold Exceeded?	Sensitive Receptors Present? ²	Significant Impact Identified? ³
			E	E+P	Increase				
1	Cochrane Rd	West of Woodview Ave	62.6	62.8	0.2	3.0	No	Yes	No
2	Cochrane Rd	Woodview Ave to Sutter Blvd	66.7	66.8	0.1	3.0	No	No	No
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	67.8	68.0	0.1	3.0	No	No	No
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	66.9	67.0	0.1	3.0	No	No	No
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	68.0	68.1	0.1	3.0	No	No	No
6	Cochrane Rd	East of US 101 NB Ramps	66.9	67.0	0.1	3.0	No	No	No
7	Woodview Ave	Cochrane Rd to Sutter Blvd	53.6	53.6	0.0	5.0	No	No	No
8	Skipper Ln	South of Cochrane Rd	48.5	48.5	0.0	5.0	No	No	No
9	Sutter Blvd	Cochrane Rd to Woodview Ave	59.9	60.0	0.0	5.0	No	No	No
10	Sutter Blvd	South of Cochrane Rd	48.3	48.3	0.0	5.0	No	No	No
11	Madrone Pkwy	Cochrane Rd to Project Driveway	58.1	58.3	0.2	5.0	No	No	No
12	Madrone Pkwy	Project Driveway to Woodview Ave	59.1	59.5	0.4	5.0	No	No	No
13	Madrone Pkwy	North of Woodview Ave	58.0	58.2	0.2	5.0	No	No	No
14	US 101 SB Ramps	South of Cochrane Rd	66.9	67.0	0.1	3.0	No	No	No
15	US 101 NB Ramps	North of Cochrane Rd	67.2	67.3	0.1	3.0	No	No	No

¹ Significance thresholds contained in General Plan Policy SSI-8.5.

² Sensitive receptors identified in this analysis include residences, churches and schools.

³ A significant impact is identified only along segments where the project-related traffic noise level increase would exceed applicable significance threshold AND where sensitive receptors are present along the roadway segment.

Source: FHWA-RD-77-108 with inputs from Hexagon and BAC

As indicated in Table 9, project-generated traffic noise level increases (Existing 2023 No Project vs. Existing 2023 Plus Project conditions) are not calculated to result in significant noise impacts at existing sensitive receptors located along the project area roadway network relative to Morgan Hill General Plan Policy SSI-8.5 increase significance criteria. As a result, this impact is identified as being ***less than significant***.

Impact 2: Increases in Cumulative Traffic Noise Levels due to the Project

The FHWA Traffic Noise Model (FHWA-RD-77-108) was used to quantify increases in future (cumulative) traffic noise levels at the nearest existing sensitive land uses to the project area roadway network. This analysis first assesses whether a cumulative roadway noise impact would occur by comparing the existing no project with cumulative plus project conditions. If a roadway noise impact is identified in this analysis, it is further evaluated to assess whether the proposed project would make a cumulatively considerable contribution to the cumulative impact. This process is completed through a comparison of the roadway noise associated with the cumulative no project scenario against the cumulative plus project scenario. Appendices G and H contain the FHWA Model inputs for Year 2035 Cumulative No Project and Year 2035 Cumulative Plus Project conditions, respectively.

Table 10 data compare existing no project traffic noise levels with cumulative plus project traffic noise levels and includes a determination regarding whether the corresponding increase in traffic noise exposure over time is considerable. Table 11 data compare cumulative no project against cumulative plus project conditions to determine if the project's contribution to the cumulative noise environment is considerable.

Table 10
Predicted Traffic Noise Level Increases at Existing Sensitive Receptors – Existing 2023 vs. Year 2035 C + Project Conditions

#	Roadway	Segment Description	Predicted DNL (dB)			Significance Threshold ¹	Threshold Exceeded?	Sensitive Receptors Present? ²	Significant Impact Identified? ³
			E	C+P	Increase				
1	Cochrane Rd	West of Woodview Ave	62.6	63.1	0.6	3.0	No	Yes	No
2	Cochrane Rd	Woodview Ave to Sutter Blvd	66.7	67.2	0.5	3.0	No	No	No
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	67.8	68.4	0.5	3.0	No	No	No
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	66.9	67.6	0.7	3.0	No	No	No
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	68.0	68.5	0.5	3.0	No	No	No
6	Cochrane Rd	East of US 101 NB Ramps	66.9	67.7	0.8	3.0	No	No	No
7	Woodview Ave	Cochrane Rd to Sutter Blvd	53.6	56.5	2.9	5.0	No	No	No
8	Skipper Ln	South of Cochrane Rd	48.5	50.5	2.0	5.0	No	No	No
9	Sutter Blvd	Cochrane Rd to Woodview Ave	59.9	60.9	1.0	5.0	No	No	No
10	Sutter Blvd	South of Cochrane Rd	48.3	49.1	0.8	5.0	No	No	No
11	Madrone Pkwy	Cochrane Rd to Project Driveway	58.1	59.1	1.0	5.0	No	No	No
12	Madrone Pkwy	Project Driveway to Woodview Ave	59.1	60.1	1.0	5.0	No	No	No
13	Madrone Pkwy	North of Woodview Ave	58.0	59.1	1.0	5.0	No	No	No
14	US 101 SB Ramps	South of Cochrane Rd	66.9	67.7	0.8	3.0	No	No	No
15	US 101 NB Ramps	North of Cochrane Rd	67.2	67.5	0.3	3.0	No	No	No

¹ Significance thresholds contained in General Plan Policy SSI-8.5.

² Sensitive receptors identified in this analysis include residences, churches and schools.

³ A significant impact is identified only along segments where the project-related traffic noise level increase would exceed applicable significance threshold AND where sensitive receptors are present along the roadway segment.

Source: FHWA-RD-77-108, Hexagon and BAC

Table 11
Predicted Traffic Noise Level Increases at Existing Sensitive Receptors – Year 2035 C vs. Year 2035 C + Project Conditions

#	Roadway	Segment Description	Predicted DNL (dB)			Significance Threshold ¹	Threshold Exceeded?	Sensitive Receptors Present? ²	Significant Impact Identified? ³
			C	C+P	Increase				
1	Cochrane Rd	West of Woodview Ave	63.0	63.1	0.2	3.0	No	Yes	No
2	Cochrane Rd	Woodview Ave to Sutter Blvd	67.1	67.2	0.1	3.0	No	No	No
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	68.2	68.4	0.1	3.0	No	No	No
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	67.5	67.6	0.1	3.0	No	No	No
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	68.4	68.5	0.1	3.0	No	No	No
6	Cochrane Rd	East of US 101 NB Ramps	67.6	67.7	0.1	3.0	No	No	No
7	Woodview Ave	Cochrane Rd to Sutter Blvd	56.5	56.5	0.0	5.0	No	No	No
8	Skipper Ln	South of Cochrane Rd	50.5	50.5	0.0	5.0	No	No	No
9	Sutter Blvd	Cochrane Rd to Woodview Ave	60.9	60.9	0.0	3.0	No	No	No
10	Sutter Blvd	South of Cochrane Rd	49.1	49.1	0.0	5.0	No	No	No
11	Madrone Pkwy	Cochrane Rd to Project Driveway	59.0	59.1	0.2	5.0	No	No	No
12	Madrone Pkwy	Project Driveway to Woodview Ave	59.7	60.1	0.4	5.0	No	No	No
13	Madrone Pkwy	North of Woodview Ave	58.9	59.1	0.2	5.0	No	No	No
14	US 101 SB Ramps	South of Cochrane Rd	67.6	67.7	0.1	3.0	No	No	No
15	US 101 NB Ramps	North of Cochrane Rd	67.4	67.5	0.1	3.0	No	No	No

¹ Significance thresholds contained in General Plan Policy SSI-8.5.

² Sensitive receptors identified in this analysis include residences, churches and schools.

³ A significant impact is identified only along segments where the project-related traffic noise level increase would exceed applicable significance threshold AND where sensitive receptors are present along the roadway segment.

Source: FHWA-RD-77-108, Hexagon and BAC

Based on the results presented in Tables 10 and 11, off-site traffic noise impacts related to project-generated increases in traffic are identified as **less than significant** relative to increase significance criteria contained in Policy SSI-8.5 of the Morgan Hill General Plan.

Off-Site Noise Impacts Associated with On-Site Operational Noise Sources

The project proposes the operation of a private preschool/day care. The proposed hours of operation are 7:00 a.m. to 6:00 p.m., Monday through Friday (year-round). Adults would bring their child to school at various times in the morning. Parents/guardians would park their vehicle, walk the child into the school for check-in, and then leave the facility. A similar process would be expected at pick-up time for students in the afternoon. Excluding staff vehicles, student-related vehicles are expected to be parked for approximately 5-10 minutes at a given time.

The primary noise sources associated with project on-site operations have been identified as parking lot movements (vehicles arriving/departing, doors opening/closing, human conversation), building rooftop mechanical equipment (HVAC), and playground activities. Impact discussions for each of the identified project noise sources at nearby commercial/offices uses are provided in the following section.

For noise generated by on-site operations, Morgan Hill Municipal Code Section 18.76.090 Table 18.76-1 establishes a property line exterior noise level standard of 65 dB L_{eq} for commercial uses. Additionally, Policy SSI-8.4 of the Morgan Hill General Plan states that interior noise levels in office buildings should be maintained at 45 dB L_{eq} . Satisfaction with the City's noise level criteria at the closest commercial/office uses would ensure compliance with the City's noise level limits at commercial/office uses located farther away.

In terms of determining the ambient noise increases due to project on-site operations, an impact would occur if those activities were to substantially increase ambient noise levels above background levels at nearby existing noise-sensitive receptors. As mentioned previously, the threshold of perception of the human ear is approximately 3 to 5 dB – a 5 dB change is considered to be clearly noticeable. For the analysis of increases in ambient noise levels associated with project on-site operations, a substantial increase in ambient noise levels is assumed to occur where those activities would result in an increase by 5 dB or more over existing ambient noise levels at nearby existing noise-sensitive uses.

Impact 3: Parking Area Activity Noise Generation

As a means of determining potential noise exposure due to project parking lot activities, Bollard Acoustical Consultants, Inc. (BAC) utilized specific parking lot noise level measurements conducted by BAC. Specifically, a series of individual noise measurements were conducted of multiple vehicle types arriving and departing a parking area, including engines starting and stopping, car doors opening and closing, and people conversing as they walked towards and away from the vehicles. The results of those measurements revealed that individual parking lot movements generated mean noise levels of approximately 70 dB SEL at a reference distance of 50 feet.

To compute hourly average (L_{eq}) noise levels generated by parking lot activities, the approximate number of hourly operations must be known or assumed. According to data received from the project transportation consultant (Hexagon), the project is estimated to generate 156 AM peak hour trips and 158 PM peak hour trips. For this analysis, it was assumed that 158 peak hour trips would occur during a busy hour of student drop-off/pickup at the facility. The hourly average noise level generated by parking lot movements is computed using the following formula:

$$\text{Peak Hour } L_{eq} = 70 + 10 \log(N) - 35.6$$

Where 70 is the mean Sound Exposure Level (SEL) for an automobile parking lot arrival or departure, N is the number of parking area operations in a given hour (158), and 35.6 is 10 times the logarithm of the number of seconds in an hour. Based on the information above, project parking area activity noise exposure at the closest commercial/office uses was calculated and the results of those calculations are presented in Table 12.

Table 12
Predicted Parking Area Activity Noise Levels at Adjacent Commercial Uses

APN ¹	Assessment Location	Distance (ft) ²	Predicted Noise Level, L_{eq} (dB) ³
726-33-005	Property Line	420	33
	Building Facade	520	31
726-33-004	Property Line	120	49
	Building Facade	220	44
726-33-003	Property Line	60	55
	Building Facade	70	54
726-33-030	Property Line	115	49
	Building Facade	150	47
726-33-031	Property Line	130	48
	Nearest Building Facade	240	43

¹ Location of parcel is shown in Figure 1.
² Distance scaled from effective noise center of facility parking area to assessment location. Facility parking area considered to be inclusive of proposed new stalls and existing parking lot in front of proposed school building.
³ Predicted hourly L_{eq} based on 158 parking stalls filling/emptying during a given busy hour of student drop-off/pickup.

Source: BAC 2025

As shown in Table 12, worst-case project parking area movements are predicted to satisfy the Municipal Code 65 dB L_{eq} exterior noise level standard at the property lines of the closest parcels containing commercial/office uses.

Standard building construction (e.g., stucco siding, STC-27 windows, door weather-stripping, exterior wall insulation, composition plywood roof), typically results in an exterior to interior noise reduction of approximately 25 dB with windows closed and approximately 15 dB with windows open. Given the predicted noise levels at the exterior facades of the buildings on the adjacent commercial properties (Table 12), and after consideration of the above-mentioned exterior to interior noise level reduction typically provided by standard building construction, project parking

area noise level exposure is expected to be well below the General Plan's interior noise level standard of 45 dB L_{eq} within the closest office buildings.

As mentioned previously, the BAC noise measurement locations were specifically selected to capture the ambient level environments at nearby existing commercial/office uses. Tables 5 and 6 of this report contain the results from the BAC ambient noise surveys. Using the calculated average of measured L_{eq} noise levels during the BAC noise surveys (during the hours of 8:00 a.m. to 11:00 a.m. and 3:00 p.m. to 5:00 p.m.), ambient plus project parking area noise level increases were calculated at nearby commercial/office uses. The results of those calculations are shown in Table 13.

Table 13
Increases in Ambient L_{eq} Noise Levels at Commercial/Office Uses – Parking Area Activities

Receptor	Predicted L _{eq} (dB)	Average Measured Ambient L _{eq} (dB)	Ambient Plus Project, L _{eq} (dB)	Calculated Ambient Increase, L _{eq} (dB)
726-33-005 – Building	31	53	52.5	0.0
726-33-004 – Building	44	52	52.6	0.6
726-33-003 – Building	54	54	56.9	2.7
726-33-030 – Building	47	55	55.2	0.7
726-33-031 – Building	43	60	59.6	0.1

Source: BAC 2025

Table 13 data indicate that project-generated increases in ambient noise levels at nearby commercial/office uses are calculated to be below the applied increase significance criterion of 5 dB. It should be noted that commercial/office uses are generally regarded as noise-generating, rather than noise-sensitive, land uses. Based on the analysis and results presented above, this impact is identified as being ***less than significant***.

Impact 4: Rooftop Mechanical Equipment (HVAC) Noise Generation

The provided rooftop mechanical plan for the proposed school building indicates that a combination of rooftop units (RTUs) and exhaust fans (EFs) are proposed for installation. The project applicant also provided BAC with a mechanical schedule identifying equipment models which could be used for this project. Brief descriptions of those equipment models are provided below.

Rooftop Units

The provided rooftop mechanical plan and schedule call out four rooftop units consisting of three models manufactured by Captiveaire (CAS-HVAC1-I.100-16-5T, CAS-HVAC3-I.300-22-12.5T, CAS-HVAC1-I.200-18-7.5T, CAS-HVAC1-I.200-18-7.5T). According to published online equipment specification documentation from the manufacturer, reference sound power levels for these specific rooftop unit models range from 85 dB to 90 dB.

Exhaust Fans

The provided rooftop mechanical plan and schedule call out four exhaust fans consisting of one model manufactured by Captiveaire (DR12HFA). According to published online equipment specification documentation from the manufacturer, the reference sound pressure level for this exhaust fan model is 14.6 sones.

For this analysis, it was conservatively assumed that all identified rooftop mechanical equipment would be in operation concurrently (believed to be worst-case noise exposure). Based on this operations assumption, the provided rooftop mechanical plans/mechanical schedule, and using the cited equipment manufacturer reference sound level data above, combined project rooftop-mounted mechanical equipment noise exposure at the closest commercial/office uses was calculated and the results of those calculations are presented in Table 14.

Table 14
Predicted Rooftop Mechanical Equipment Noise Levels at Adjacent Commercial Uses

APN ¹	Assessment Location	Distance (ft) ²	Predicted Noise Level, L _{eq} (dB) ³
726-33-005	Property Line	260	46
	Building Facade	375	43
726-33-004	Property Line	100	55
	Building Facade	150	51
726-33-003	Property Line	155	51
	Building Facade	165	50
726-33-030	Property Line	300	45
	Building Facade	350	44
726-33-031	Property Line	185	49
	Nearest Building Facade	365	43

¹ Location of parcel is shown in Figure 1.

² Distance scaled from effective noise center of building rooftop to assessment location.

³ Predicted hourly L_{eq} conservatively assumes all identified rooftop equipment in operation continuously and concurrently (four rooftop units and four exhaust fans).

Source: BAC 2025

Table 14 data indicate that project rooftop mechanical equipment noise level exposure is predicted to comply with the Municipal Code 65 dB L_{eq} exterior noise level standard at the property lines of the closest parcels containing commercial/office uses.

Given the aforementioned exterior to interior noise level reduction typically achieved with standard building construction (approximately 25 dB with windows closed and approximately 15 dB with windows open), and after consideration of the predicted noise levels at the exterior facades of the buildings on the adjacent commercial properties presented in Table 14, project rooftop mechanical equipment noise level exposure is expected to be well below the General Plan's interior noise level standard of 45 dB L_{eq} within the closest office buildings.

Using the calculated average of measured L_{eq} noise levels during the BAC noise surveys (during the hours of 8:00 a.m. to 11:00 a.m. and 3:00 p.m. to 5:00 p.m.), ambient plus project rooftop

mechanical equipment noise level increases were calculated at nearby commercial/office uses. The results of those calculations are shown in Table 15.

Table 15
Increases in Ambient L_{eq} Noise Levels at Commercial/Office Uses – Rooftop Equipment

Receptor	Predicted L_{eq} (dB)	Average Measured Ambient L_{eq} (dB)	Ambient Plus Project, L_{eq} (dB)	Calculated Ambient Increase, L_{eq} (dB)
726-33-005 – Building	43	53	53.0	0.5
726-33-004 – Building	51	52	54.5	2.5
726-33-003 – Building	50	54	55.6	1.5
726-33-030 – Building	44	55	54.8	0.3
726-33-031 – Building	43	60	59.6	0.1

Source: BAC 2025

As shown in Table 15, project-generated increases in ambient noise levels at nearby commercial/office uses are calculated to be below the applied increase significance criterion of 5 dB. As mentioned previously, commercial/office uses are generally regarded as noise-generating, rather than noise-sensitive, land uses. Based on the analysis and results presented above, this impact is identified as being ***less than significant***.

Impact 5: Playground Noise Generation

According to the provided site plans, the project will have outdoor play areas on the north, west and east sides of the building. The locations of the outdoor play areas are shown in Figure 2. For the assessment of playground noise impacts, noise level data collected by BAC staff at various outdoor play areas in recent years was utilized. The primary noise source associated with play area use is shouting children. BAC file data indicates that average noise levels of similar sized outdoor playgrounds are approximately 60 dB L_{eq} at 50 feet from the focal point of the play area. Based on the reference noise level data cited above, project playground noise exposure was calculated at the closest commercial/office uses and the results of those calculations are presented in Table 16.

Table 16
Predicted Playground Noise Levels at Adjacent Commercial Uses

APN ¹	Assessment Location	Distance (ft) ²	Predicted Noise Level, L _{eq} (dB) ³
726-33-005	Property Line	145	51
	Building Facade	255	46
726-33-004	Property Line	30	64
	Building Facade	115	53
726-33-003	Property Line	70	57
	Building Facade	80	56
726-33-030	Property Line	250	46
	Building Facade	285	45
726-33-031	Property Line	100	54
	Nearest Building Facade	265	46

¹ Location of parcel is shown in Figure 1.

² Distance scaled from effective noise center of closest playground or open play area to assessment location.

³ Predicted hourly L_{eq} based on cited BAC reference noise level data for similar sized school playground areas (100 children).

Source: BAC 2025

As indicated in Table 16, project playground noise level exposure is predicted to satisfy the Municipal Code 65 dB L_{eq} exterior noise level standard at the property lines of the closest parcels containing commercial/office uses.

Given the aforementioned exterior to interior noise level reduction typically achieved with standard building construction (approximately 25 dB with windows closed and approximately 15 dB with windows open), and after consideration of the predicted noise levels at the exterior facades of the buildings on the adjacent commercial properties shown in Table 16, project playground noise level exposure is expected to be well below the General Plan's interior noise level standard of 45 dB L_{eq} within the closest office buildings.

Using the calculated average of measured L_{eq} noise levels during the BAC noise surveys (during the hours of 8:00 a.m. to 11:00 a.m. and 3:00 p.m. to 5:00 p.m.), ambient plus project playground noise level increases were calculated at nearby commercial/office uses. The results of those calculations are presented in Table 17.

Table 17
Increases in Ambient L_{eq} Noise Levels at Commercial/Office Uses – Playground Activities

Receptor	Predicted L _{eq} (dB)	Average Measured Ambient L _{eq} (dB)	Ambient Plus Project, L _{eq} (dB)	Calculated Ambient Increase, L _{eq} (dB)
726-33-005 – Building	46	53	53.4	0.9
726-33-004 – Building	53	52	55.4	3.4
726-33-003 – Building	56	54	58.1	4.0
726-33-030 – Building	45	55	55.0	0.5
726-33-031 – Building	46	60	59.7	0.2

Source: BAC 2025

As shown in Table 17, project-generated increases in ambient noise levels at nearby commercial/office uses are calculated to be below the applied increase significance criterion of 5 dB. As mentioned previously, commercial/office uses are generally regarded as noise-generating, rather than noise-sensitive, land uses. Based on the analysis and results presented above, this impact is identified as being *less than significant*.

Impact 6: Cumulative (Combined) On-Site Operations Noise Generation

The calculated combined noise levels from analyzed on-site operations at the closest commercial/office uses are presented in Table 18. It should be noted that due to the logarithmic nature of the decibel scale, the sum of two noise values which differ by 10 dB equates to an overall increase in noise levels of 0.4 dB. When the noise sources are equivalent, the sum would result in an overall increase in noise levels of 3 dB. As shown in Table 18, calculated combined noise level exposure from analyzed project on-site operations would comply with the Municipal Code 65 dB L_{eq} exterior noise level standard at the property lines of the closest parcels containing commercial/office uses.

Table 18
Calculated Combined On-Site Operations Noise Levels at Adjacent Commercial Uses

APN	Assessment Location	Predicted Noise Level, L_{eq} (dB)			Combined, L_{eq} (dB) ¹
		Parking	HVAC	Playground	
726-33-005	Property Line	33	46	51	52
	Building Facade	31	43	46	48
726-33-004	Property Line	49	55	64	65
	Building Facade	44	51	53	55
726-33-003	Property Line	55	51	57	60
	Building Facade	54	50	56	59
726-33-030	Property Line	49	45	46	52
	Building Facade	47	44	45	50
726-33-031	Property Line	48	49	54	56
	Nearest Building Facade	43	43	46	49

¹ Calculated combined noise levels based on predicted noise levels presented in Impacts 3-5.

Source: BAC 2025

Given the aforementioned exterior to interior noise level reduction typically achieved with standard building construction (approximately 25 dB with windows closed and approximately 15 dB with windows open), and after consideration of the calculated combined operations noise levels at the exterior facades of the buildings on the adjacent commercial properties shown in Table 18, combined project on-site operations noise level exposure is expected to be well below the General Plan's interior noise level standard of 45 dB L_{eq} within the closest office buildings.

Using the calculated average of measured L_{eq} noise levels during the BAC noise surveys (during the hours of 8:00 a.m. to 11:00 a.m. and 3:00 p.m. to 5:00 p.m.), ambient plus combined project on-site operations noise level increases were calculated at nearby commercial/office uses. The results of those calculations are shown in Table 19.

Table 19
Increases in Ambient L_{eq} Noise Levels at Commercial/Office Uses – Combined Operations

Receptor	Combined L_{eq} (dB)	Average Measured Ambient L_{eq} (dB)	Ambient Plus Project, L_{eq} (dB)	Calculated Ambient Increase, L_{eq} (dB)
726-33-005 – Building	48	53	53.8	1.3
726-33-004 – Building	55	52	57.1	5.1
726-33-003 – Building	59	54	59.9	5.7
726-33-030 – Building	50	55	55.9	1.4
726-33-031 – Building	49	60	59.8	0.3

Source: BAC 2025

Table 19 data indicate that increases in ambient noise levels associated with combined on-site operations are calculated to exceed the applied increase significance criterion of 5 dB at the commercial/office buildings located on APNs: 726-33-004 and 726-33-003. However, as mentioned previously, commercial/office uses are generally not considered to be noise-sensitive. Because combined on-site operations noise levels are calculated to comply with applicable Municipal Code and General Plan noise level criteria, and because nearby existing commercial/offices to the project are not identified as being noise-sensitive, this impact is identified as being ***less than significant***.

Noise Impacts Associated with Project Construction Activities

Impact 7: Project On-Site Construction Activity Noise Generation

During project construction activities, heavy equipment would be used for grading, excavation, paving, and building construction, which would increase ambient noise levels when in use. Noise levels would vary depending on the type of equipment used, how it is operated, and how well it is maintained. Noise exposure at any single point outside the project work area would also vary depending upon the proximity of equipment activities to that point.

Table 20 includes the range of maximum noise levels for equipment commonly used in general construction projects at full-power operation at 50 feet. It should be noted that not all of these construction activities would be required of this project. Table 20 data also include predicted maximum (L_{max}) equipment noise levels at nearby commercial/office uses.

Table 20
Reference and Projected Noise Levels for Typical Residential Construction Equipment

Equipment	Reference Noise Level at 50 Ft, L _{max} (dB)	Projected Noise Level at Indicated Receptor Distance, L _{max} (dB)				
		726-33-005 Building (250')	726-33-004 Building (115')	726-33-003 Building (65')	726-33-030 Building (150')	726-33-031 Building (250')
Air compressor	80	66	73	78	70	66
Backhoe	80	66	73	78	70	66
Ballast equalizer	82	68	75	80	72	68
Ballast tamper	83	69	76	81	73	69
Compactor	82	68	75	80	72	68
Concrete mixer	85	71	78	83	75	71
Concrete pump	82	68	75	80	72	68
Concrete vibrator	76	62	69	74	66	62
Crane, mobile	83	69	76	81	73	69
Dozer	85	71	78	83	75	71
Excavator	85	71	78	83	75	71
Generator	82	68	75	80	72	68
Grader	85	71	78	83	75	71
Impact wrench	85	71	78	83	75	71
Loader	80	66	73	78	70	66
Paver	85	71	78	83	75	71
Pneumatic tool	85	71	78	83	75	71
Pump	77	63	70	75	67	63
Saw	76	62	69	74	66	62
Scarifier	83	69	76	81	73	69
Scraper	85	71	78	83	75	71
Shovel	82	68	75	80	72	68
Spike driver	77	63	70	75	67	63
Tie cutter	84	70	77	82	74	70
Tie handler	80	66	73	78	70	66
Tie inserter	85	71	78	83	75	71
Truck	84	70	77	82	74	70

Source: 2018 FTA Noise and Vibration Impact Assessment Manual, Table 7-1 and BAC

As noted in the Regulatory Setting Section of this report, Section 8.28.040(D) of the Morgan Hill Municipal Code exempts construction noise provided that such activities do not occur during set hours. Specifically, construction activities are prohibited other than between the hours of 7:00 a.m. and 8:00 p.m., Monday through Friday and between the hours of 9:00 a.m. to 6:00 p.m. on Saturday. Further, construction activities may not occur on Sundays or federal holidays. It is reasonably assumed for the purposes of this analysis that all on-site noise-generating project construction equipment and activities would occur pursuant to Municipal Code Section 8.28.040(D) and would thereby be exempt from Municipal Code noise level criteria.

Based on the equipment noise levels in Table 20, worst-case project construction equipment maximum noise levels are predicted to range from 58 dB L_{max} to 88 dB L_{max} at nearby commercial office uses. The predicted construction equipment maximum noise levels at these receptors (buildings) are below or within the range of ambient maximum noise levels measured by BAC within the vicinity of those buildings during exempted City of Morgan Hill construction activity hours. Nonetheless, depending upon the location, equipment types, and associated duration of

operations within the project area, it is possible that during certain construction phases, on-site project construction noise levels would have the potential to result in short-duration, temporary increases in ambient conditions within the immediate project vicinity.

In terms of determining the temporary noise increase due to project-related construction activities, an impact would occur if those activities were to noticeably increase ambient noise levels above background levels at nearby existing noise-sensitive receptors. As mentioned previously in this report, the threshold of perception of the human ear is approximately 3 to 5 dB – a 5 dB change is considered to be clearly noticeable. For this analysis, a noticeable increase in ambient noise levels is assumed to occur where noise levels increase by 5 dB or more over existing ambient noise levels.

As mentioned previously, the BAC noise measurement locations were specifically selected to capture the ambient level environments at nearby existing commercial/office uses. Using the highest maximum noise levels measured during city-exempted construction hours, and the highest predicted construction equipment maximum noise levels shown in Table 20, ambient plus project construction equipment noise level increases were calculated at nearby commercial/office uses (buildings). The results of those calculations indicate that increases in ambient maximum noise levels from project construction activities would range from 0.1 dB L_{max} to 2.7 dB L_{max} . The calculated range of ambient maximum noise level increases is below the applied increase significance criterion of 5 dB. As mentioned previously, commercial/office uses are generally regarded as noise-generating, rather than noise-sensitive, land uses.

Based on the analysis and results provided above, this impact is identified as being ***less than significant***. Nonetheless, to reduce the potential for annoyance at nearby existing receptors, the following measures should be incorporated into project on-site construction operations:

- All on-site noise-generating construction activities shall occur pursuant to Section 8.28.040(D) of the Morgan Hill Municipal Code.
- Construction noise control measures including the use of temporary noise barriers and/or other measures to attenuate noise generated during construction should be considered and implemented as feasible.
- All equipment and vehicles should be powered off when not in use. Unnecessary idling of internal combustion engines should be prohibited.
- All mobile or fixed noise-producing construction equipment used on the project site that is regulated for noise output by a federal, state, or local agency shall comply with such regulations.
- Select quiet equipment, particularly air compressors, whenever possible. All noise-producing project construction equipment and vehicles using internal combustion engines should be equipped with manufacturer-recommended mufflers and be maintained in good working condition. Electrically powered equipment should be used instead of pneumatic or internal combustion powered equipment, where feasible.
- Material stockpiles and mobile equipment staging, parking, and maintenance areas shall be located as far as practicable from existing off-site receptors.

- Nearby off-site receptors should be notified of construction schedules so that arrangements can be made, if desired, to limit exposure to short-term increases in ambient noise levels.

Vibration Impacts Associated with Project Activities

Impact 8: Vibration Generated by On-Site Project Demolition/Construction/Operations

During project demolition and construction, heavy equipment would be used for grading, excavation, paving, and building construction, which would generate localized vibration in the immediate vicinity of the construction. The nearest existing structures have been identified as relatively newer engineered commercial buildings (not highly susceptible to damage by vibration).

Table 21 includes the range of vibration levels for equipment commonly used in general residential construction projects at a distance of 25 feet. Table 21 data also include projected equipment vibration levels at the nearest off-site existing structures to the project area.

Table 21
Reference and Projected Vibration Source Amplitudes for Construction Equipment

Equipment	Reference Maximum Vibration Level at 25 feet, VdB (rms)	Projected Maximum Vibration Level at Receptor Distance, VdB (rms) ¹				
		726-33-005 Building (250')	726-33-004 Building (115')	726-33-003 Building (65')	726-33-030 Building (150')	726-33-031 Building (250')
Vibratory Roller	94	60	70	81	65	60
Hoe Ram	87	58	62	70	60	58
Large bulldozer	87	58	62	70	60	58
Caisson drilling	87	58	62	70	60	58
Loaded trucks	86	57	61	68	59	57
Jackhammer	79	55	59	61	57	55
Small bulldozer	58	<55	<55	55	<55	<55

¹ RMS velocity in decibels (VdB) re 1 micro-inch/second.

Source: 2018 FTA Transit Noise and Vibration Impact Assessment Manual and BAC

Section 18.76.130 of the Morgan Hill Municipal Code states that vibration transmitted through the ground that is discernible without instruments at the lot line of the establishment or use is prohibited. However, vibrations from temporary construction, demolition, and vehicles that enter and leave the lot (e.g., construction equipment, trucks, etc.) are exempt from this standard.

Based on the data presented in Table 21, vibration levels generated from on-site demolition/construction activities are predicted to be below the FTA threshold for damage to engineered structures (98 VdB) at 25 feet from those activities. Table 21 data also indicate that, apart from the vibratory roller at the closest building to the project area (located on APN: 726-33-003), construction-related vibration levels are projected to be below FTA thresholds applicable to land uses with primary daytime uses (i.e., commercial/office uses). However, vibratory rollers such as those identified in Table 21 are typically used for larger paving activities including roadways and large parking lots. Based on the size of the project parking area that would require paving (approximately 10 parking stalls), it is reasonable to assume that the project construction

contractor would utilize smaller equipment such as a plate compactor or walk-behind vibratory roller, which generate substantially less vibration than the large vibratory rollers shown in Table 21.

Results from the ambient vibration level monitoring within the project area (Table 7) indicate that average measured vibration levels were below the threshold of human perception (65 VdB). Therefore, it is expected that the project would not result in the exposure of people to excessive groundborne vibration levels at proposed uses of the project. Finally, the project proposes the construction of a school. It is the experience of BAC that schools do not typically have equipment that generates appreciable vibration.

Based on the analysis provided above, vibration levels due to and upon the project are expected to be satisfactory relative to the applied FTA vibration impact criteria. As a result, this impact is identified as being ***less than significant***.

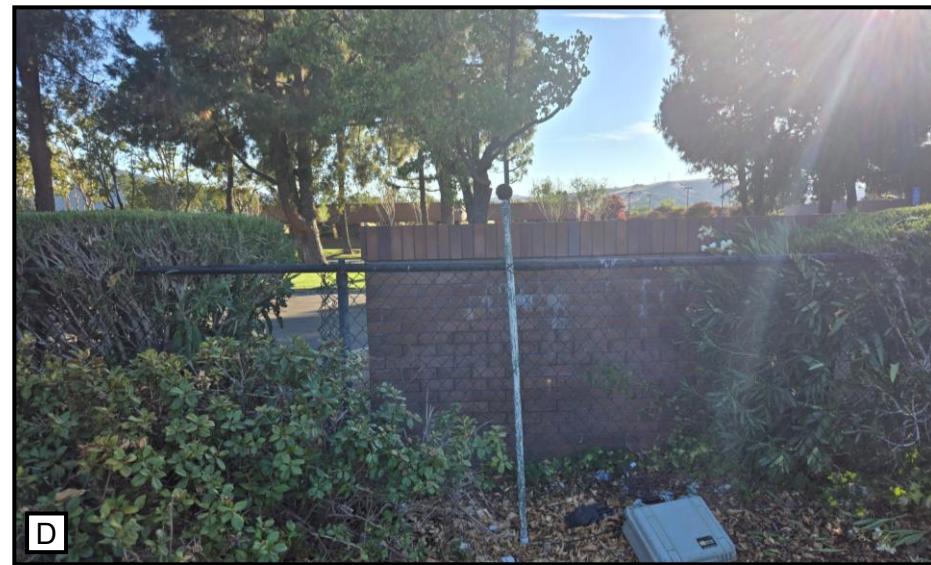
This concludes BAC's noise and vibration assessment of the Primrose School project in Morgan Hill, California. Please contact BAC at (530) 537-2328 or dariog@bacnoise.com if you have any comments or questions regarding this report.

Appendix A Acoustical Terminology

Acoustics	The science of sound.
Ambient Noise	The distinctive acoustical characteristics of a given space consisting of all noise sources audible at that location. In many cases, the term ambient is used to describe an existing or pre-project condition such as the setting in an environmental noise study.
Attenuation	The reduction of an acoustic signal.
A-Weighting	A frequency-response adjustment of a sound level meter that conditions the output signal to approximate human response.
Decibel or dB	Fundamental unit of sound. A Bell is defined as the logarithm of the ratio of the sound pressure squared over the reference pressure squared. A Decibel is one-tenth of a Bell.
CNEL	Community Noise Equivalent Level. Defined as the 24-hour average noise level with noise occurring during evening hours (7 - 10 p.m.) weighted by a factor of three and nighttime hours weighted by a factor of 10 prior to averaging.
Frequency	The measure of the rapidity of alterations of a periodic signal, expressed in cycles per second or hertz.
IIC	Impact Insulation Class (IIC): A single-number representation of a floor/ceiling partition's impact generated noise insulation performance. The field-measured version of this number is the FIIC.
Ldn	Day/Night Average Sound Level. Similar to CNEL but with no evening weighting.
Leq	Equivalent or energy-averaged sound level.
Lmax	The highest root-mean-square (RMS) sound level measured over a given period of time.
Loudness	A subjective term for the sensation of the magnitude of sound.
Masking	The amount (or the process) by which the threshold of audibility is for one sound is raised by the presence of another (masking) sound.
Noise	Unwanted sound.
Peak Noise	The level corresponding to the highest (not RMS) sound pressure measured over a given period of time. This term is often confused with the "Maximum" level, which is the highest RMS level.
RT₆₀	The time it takes reverberant sound to decay by 60 dB once the source has been removed.
STC	Sound Transmission Class (STC): A single-number representation of a partition's noise insulation performance. This number is based on laboratory-measured, 16-band (1/3-octave) transmission loss (TL) data of the subject partition. The field-measured version of this number is the FSTC.

Legend

- A Site LT-1 (Noise): Facing southeast along project property line towards parking lot
- B Site LT-1 (Noise): Facing northwest along project property line from measurement location
- C Site LT-1 (Noise): Facing southwest towards monitoring equipment on project property line


Primrose School
Morgan Hill, California

Field Survey Photographs

Noise measurement equipment

Appendix B-1

Legend

- A Site ST-1 (Noise): Facing northwest towards Woodview Avenue
- B Site ST-1 (Noise): Facing southeast towards project area along project property line
- C Site ST-2 (Noise): Facing west towards commercial/office use
- D Site ST-3 (Noise): Facing west towards commercial/office use

Primrose School
Morgan Hill, California

Field Survey Photographs

Noise measurement equipment

Appendix B-2

A

B

C

D

Legend

- A Site ST-4 (Noise): Facing east towards commercial/office uses
- B Site ST-4 (Noise): Facing southeast towards commercial/office uses
- C Site ST-5 (Noise): Facing northeast towards commercial/office uses
- D Site ST-5 (Noise): Facing west towards parking lot and project area

Primrose School
Morgan Hill, California

Field Survey Photographs

Noise measurement equipment

Appendix B-3

 BOLLARD
Acoustical Consultants

Legend

- A Site LT-1 (Vibration): Facing southeast along project property line towards parking lot
- B Site LT-1 (Vibration): Facing northwest along project property line from measurement location

Primrose School
Morgan Hill, California

Field Survey Photographs

Vibration measurement equipment

Appendix B-4

 BOLLARD
Acoustical Consultants

Appendix C-1
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Friday, August 29, 2025

Hour	Leq	Lmax	L50	L90
12:00 AM	44	56	43	41
1:00 AM	43	59	43	40
2:00 AM	47	58	44	40
3:00 AM	45	62	44	42
4:00 AM	47	56	47	44
5:00 AM	51	62	50	48
6:00 AM	52	73	50	48
7:00 AM	51	61	51	49
8:00 AM	52	61	52	50
9:00 AM	50	60	50	48
10:00 AM	50	65	49	47
11:00 AM	50	67	48	46
12:00 PM	49	61	48	46
1:00 PM	50	70	49	47
2:00 PM	55	85	50	48
3:00 PM	51	62	50	49
4:00 PM	52	68	51	49
5:00 PM	51	58	50	49
6:00 PM	51	67	51	49
7:00 PM	52	70	51	49
8:00 PM	52	67	52	50
9:00 PM	52	61	51	50
10:00 PM	54	70	52	50
11:00 PM	50	67	50	48

Statistical Summary						
Daytime (7 a.m. - 10 p.m.)			Nighttime (10 p.m. - 7 a.m.)			
Leq (Average)	High	Low	Average	High	Low	
Lmax (Maximum)	85	58	65	73	56	63
L50 (Median)	52	48	50	52	43	47
L90 (Background)	50	46	48	50	40	45

Computed DNL, dB	56
% Daytime Energy	72%
% Nighttime Energy	28%

GPS Coordinates
37°09'04.80"N
121°39'29.11"W

Appendix C-2
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Monday, September 1, 2025

Hour	Leq	Lmax	L50	L90
12:00 AM	50	65	49	46
1:00 AM	49	62	47	45
2:00 AM	46	63	45	43
3:00 AM	46	58	45	42
4:00 AM	49	62	48	44
5:00 AM	49	56	48	46
6:00 AM	49	60	49	47
7:00 AM	49	63	48	46
8:00 AM	47	60	46	44
9:00 AM	48	58	47	46
10:00 AM	49	63	48	46
11:00 AM	50	67	48	46
12:00 PM	50	66	49	47
1:00 PM	50	60	50	48
2:00 PM	51	62	50	48
3:00 PM	51	63	51	49
4:00 PM	51	59	51	49
5:00 PM	51	64	50	48
6:00 PM	51	60	50	47
7:00 PM	52	69	51	49
8:00 PM	51	64	50	48
9:00 PM	53	77	51	50
10:00 PM	51	64	50	48
11:00 PM	50	71	49	46

Statistical Summary						
Daytime (7 a.m. - 10 p.m.)			Nighttime (10 p.m. - 7 a.m.)			
High	Low	Average	High	Low	Average	
Leq (Average)	53	47	50	51	46	49
Lmax (Maximum)	77	58	64	71	56	62
L50 (Median)	51	46	49	50	45	48
L90 (Background)	50	44	48	48	42	45

Computed DNL, dB	56
% Daytime Energy	70%
% Nighttime Energy	30%

GPS Coordinates
37°09'04.80"N
121°39'29.11"W

Appendix C-3
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Tuesday, September 2, 2025

Hour	Leq	Lmax	L50	L90
12:00 AM	49	70	47	44
1:00 AM	46	66	45	42
2:00 AM	48	56	47	45
3:00 AM	49	60	48	45
4:00 AM	52	59	52	50
5:00 AM	54	65	54	52
6:00 AM	55	71	54	52
7:00 AM	56	63	56	54
8:00 AM	57	81	54	52
9:00 AM	55	69	54	52
10:00 AM	56	75	55	53
11:00 AM	55	67	55	53
12:00 PM	55	63	55	53
1:00 PM	54	67	54	52
2:00 PM	54	65	54	52
3:00 PM	54	71	53	52
4:00 PM	54	66	53	52
5:00 PM	53	63	52	50
6:00 PM	52	59	52	50
7:00 PM	53	70	52	50
8:00 PM	53	74	53	51
9:00 PM	54	68	54	52
10:00 PM	54	75	52	48
11:00 PM	48	55	48	45

Statistical Summary						
Daytime (7 a.m. - 10 p.m.)			Nighttime (10 p.m. - 7 a.m.)			
High	Low	Average	High	Low	Average	
Leq (Average)	57	52	55	55	46	52
Lmax (Maximum)	81	59	68	75	55	64
L50 (Median)	56	52	54	54	45	50
L90 (Background)	54	50	52	52	42	47

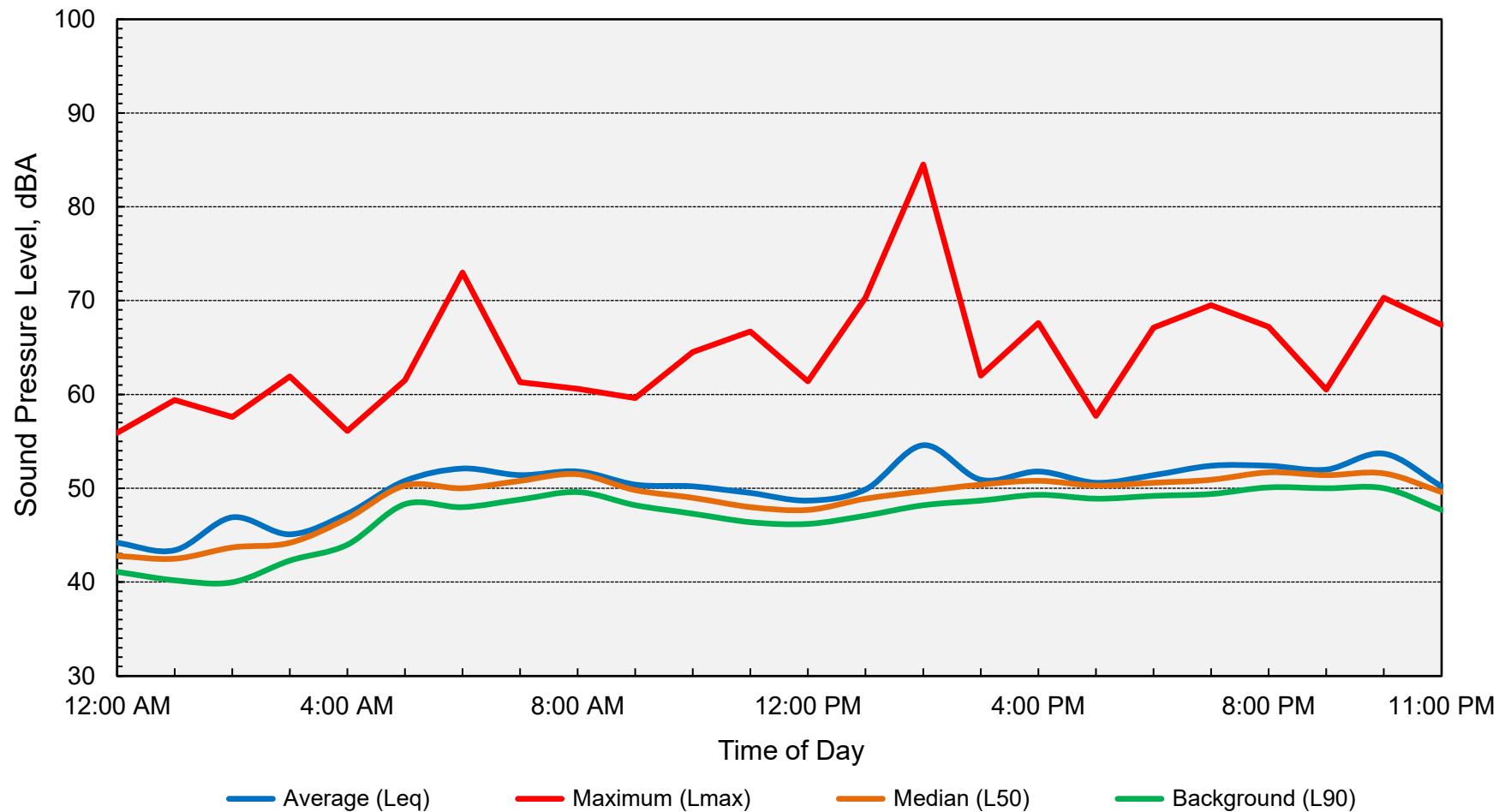
Computed DNL, dB	59
% Daytime Energy	77%
% Nighttime Energy	23%

GPS Coordinates
37°09'04.80"N
121°39'29.11"W

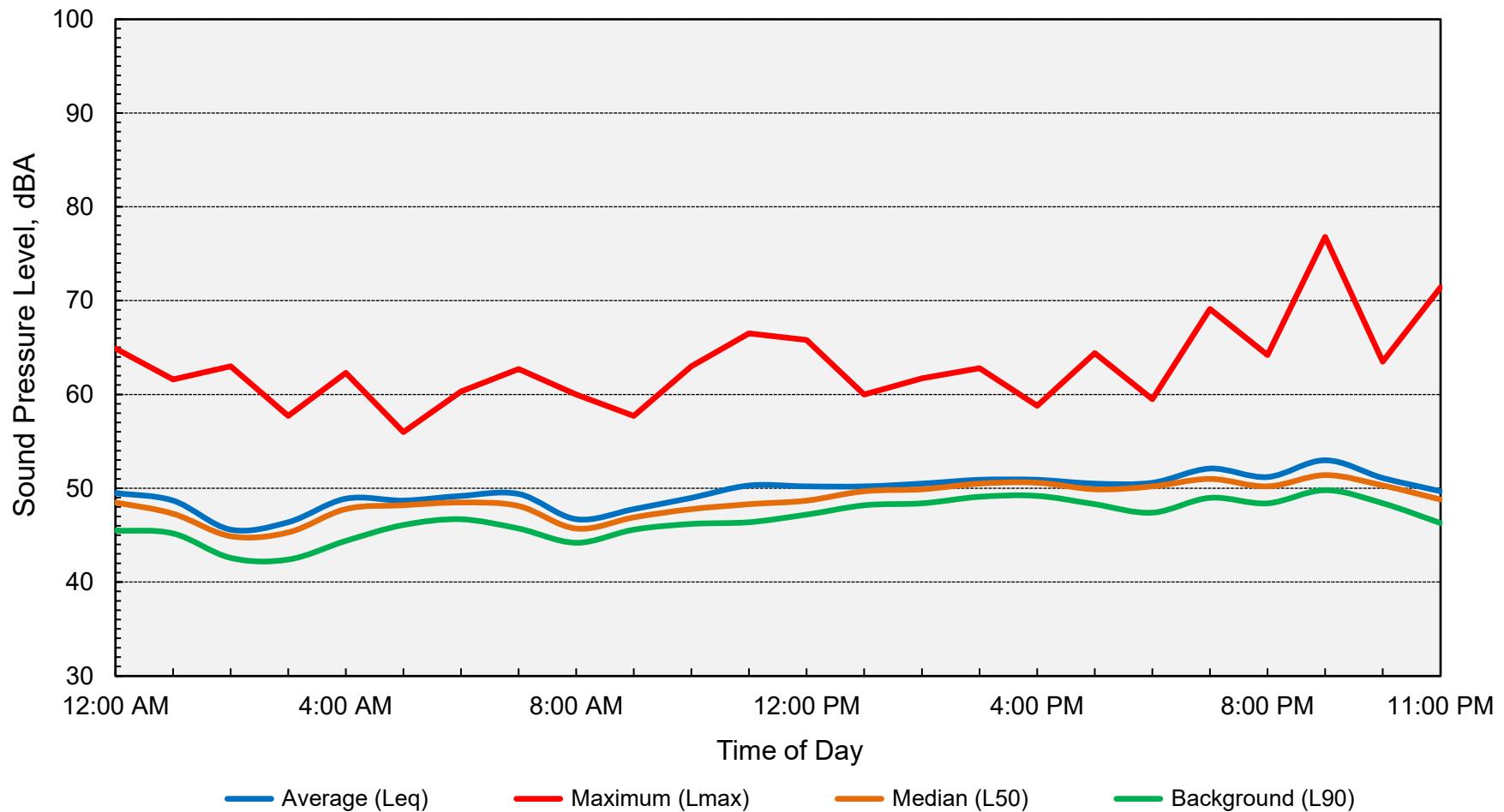
Appendix C-4
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Wednesday, September 3, 2025

Hour	Leq	Lmax	L50	L90
12:00 AM	48	57	48	45
1:00 AM	48	59	47	44
2:00 AM	48	60	47	45
3:00 AM	47	57	47	44
4:00 AM	47	55	47	45
5:00 AM	52	59	51	48
6:00 AM	54	62	54	53
7:00 AM	54	68	54	52
8:00 AM	54	64	54	52
9:00 AM	57	72	54	52
10:00 AM	53	64	52	50
11:00 AM	52	67	51	50
12:00 PM	53	65	51	49
1:00 PM	52	62	50	48
2:00 PM	50	65	49	46
3:00 PM	49	66	47	45
4:00 PM	50	64	48	45
5:00 PM	50	65	49	47
6:00 PM	51	70	49	47
7:00 PM	53	66	52	50
8:00 PM	52	63	52	50
9:00 PM	52	70	50	48
10:00 PM	49	63	48	45
11:00 PM	47	57	46	44

Statistical Summary						
Daytime (7 a.m. - 10 p.m.)			Nighttime (10 p.m. - 7 a.m.)			
High	Low	Average	High	Low	Average	
Leq (Average)	57	49	53	54	47	50
Lmax (Maximum)	72	62	66	63	55	59
L50 (Median)	54	47	51	54	46	48
L90 (Background)	52	45	49	53	44	46

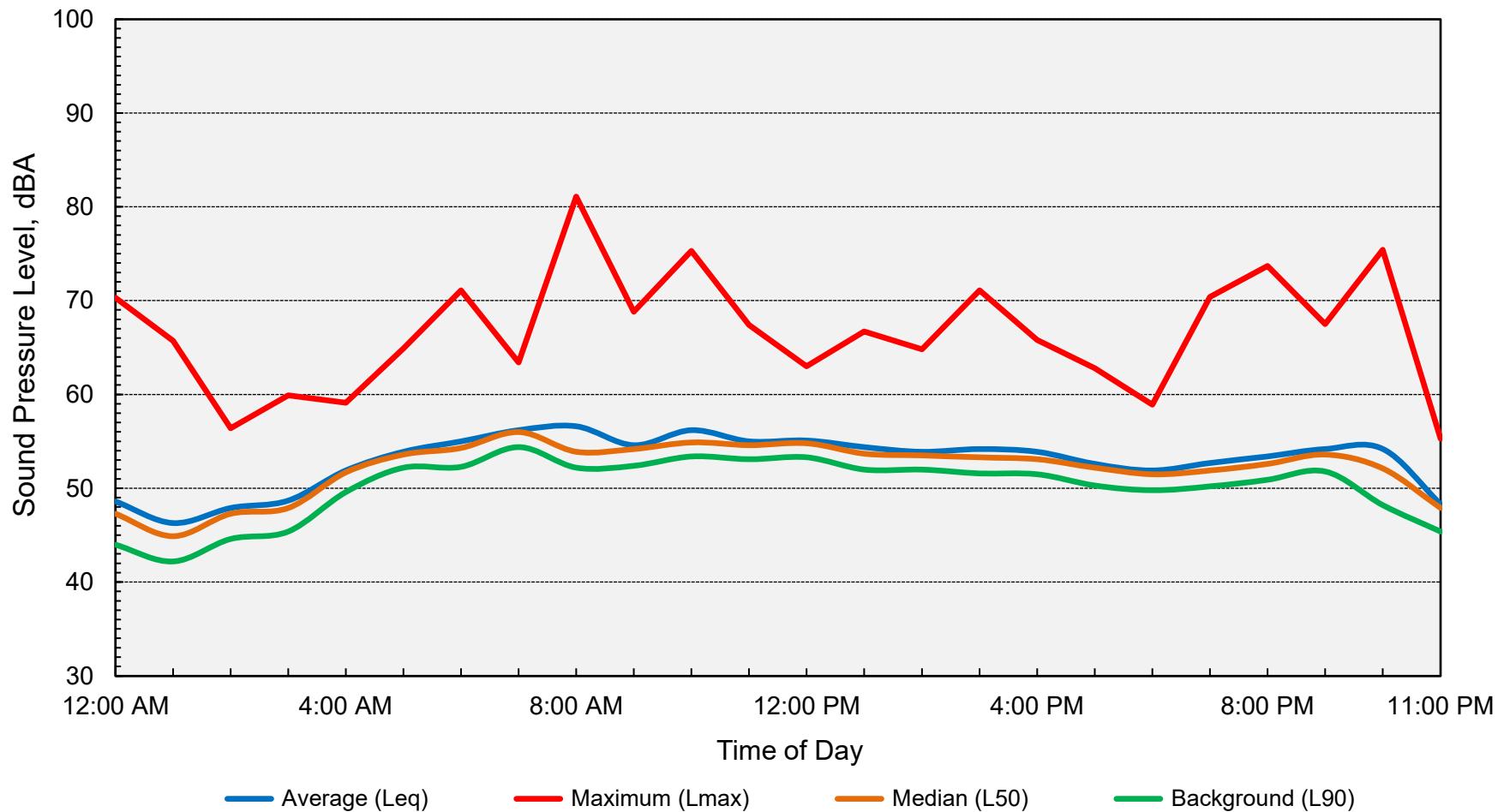


Computed DNL, dB	57
% Daytime Energy	76%
% Nighttime Energy	24%

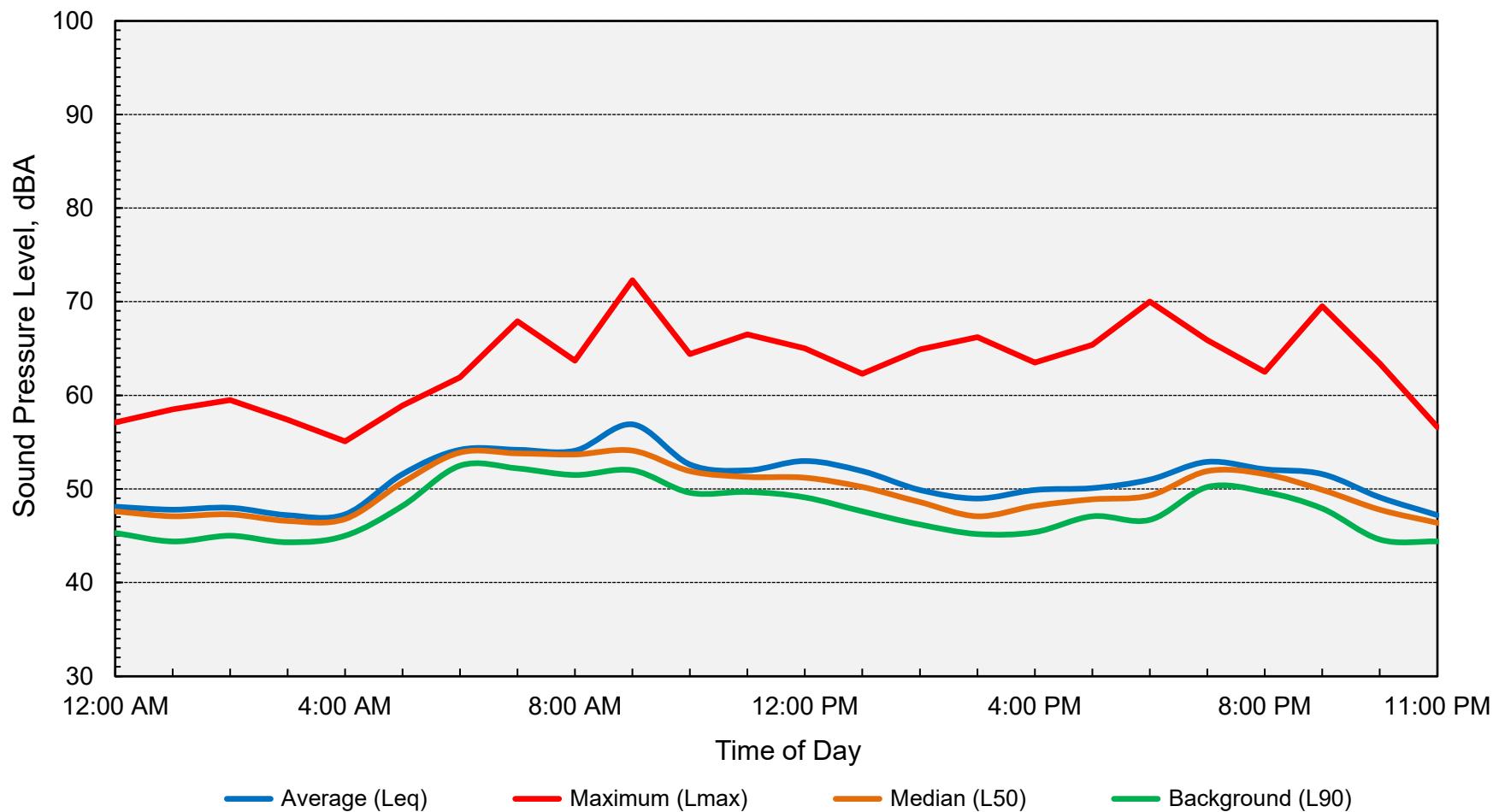

GPS Coordinates
37°09'04.80"N
121°39'29.11"W

Appendix D-1
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Friday, August 29, 2025

Computed DNL = 56 dB


Appendix D-2
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Monday, September 1, 2025

Computed DNL = 56 dB



Appendix D-3
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Tuesday, September 2, 2025

Computed DNL = 59 dB

Appendix D-4
Long-Term Ambient Noise Monitoring Results - Site LT-1
Primrose School - Morgan Hill, California
Wednesday, September 3, 2025

Computed DNL = 57 dB

Appendix E
FHWA Highway Traffic Noise Prediction Model Inputs
Primrose School
Existing 2023 No Project
Run Date: 9/22/2025

#	Roadway	Description	ADT	Day %	Night %	% Med. Trucks	% Hvy. Trucks	Speed	Distance to Receptor	Offset (dB)
1	Cochrane Rd	West of Woodview Ave	13,100	80	20	2	2	45	150	0
2	Cochrane Rd	Woodview Ave to Sutter Blvd	18,220	80	20	2	2	45	100	0
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	23,970	80	20	2	2	45	100	0
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	19,320	80	20	2	2	45	100	0
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	25,015	80	20	2	2	45	100	0
6	Cochrane Rd	East of US 101 NB Ramps	19,405	80	20	2	2	45	100	0
7	Woodview Ave	Cochrane Rd to Sutter Blvd	1,560	80	20	2	2	35	100	0
8	Skipper Ln	South of Cochrane Rd	760	80	20	2	2	25	100	0
9	Sutter Blvd	Cochrane Rd to Woodview Ave	6,650	80	20	2	2	35	100	0
10	Sutter Blvd	South of Cochrane Rd	585	80	20	1	1	35	100	0
11	Madrone Pkwy	Cochrane Rd to Project Drwy	5,575	80	20	1	1	35	100	0
12	Madrone Pkwy	Project Drwy to Woodview Ave	7,035	80	20	1	1	35	100	0
13	Madrone Pkwy	North of Woodview Ave	5,500	80	20	1	1	35	100	0
14	US 101 SB Ramps	South of Cochrane Rd	9,770	80	20	2	2	60	100	0
15	US 101 NB Ramps	North of Cochrane Rd	10,495	80	20	2	2	60	100	0

Notes:

-Sensitive receptors identified as residences, churches, schools and hospitals.

Appendix F
FHWA Highway Traffic Noise Prediction Model Inputs
Primrose School
Existing 2023+Project
Run Date: 9/22/2025

#	Roadway	Description	ADT	Day %	Night %	% Med. Trucks	% Hvy. Trucks	Speed	Distance to Receptor	Offset (dB)
1	Cochrane Rd	West of Woodview Ave	13,680	80	20	2	2	45	150	0
2	Cochrane Rd	Woodview Ave to Sutter Blvd	18,850	80	20	2	2	45	100	0
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	24,675	80	20	2	2	45	100	0
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	19,800	80	20	2	2	45	100	0
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	25,715	80	20	2	2	45	100	0
6	Cochrane Rd	East of US 101 NB Ramps	19,895	80	20	2	2	45	100	0
7	Woodview Ave	Cochrane Rd to Sutter Blvd	1,560	80	20	2	2	35	100	0
8	Skipper Ln	South of Cochrane Rd	760	80	20	2	2	25	100	0
9	Sutter Blvd	Cochrane Rd to Woodview Ave	6,700	80	20	2	2	35	100	0
10	Sutter Blvd	South of Cochrane Rd	585	80	20	1	1	35	100	0
11	Madrone Pkwy	Cochrane Rd to Project Drwy	5,815	80	20	1	1	35	100	0
12	Madrone Pkwy	Project Drwy to Woodview Ave	7,740	80	20	1	1	35	100	0
13	Madrone Pkwy	North of Woodview Ave	5,740	80	20	1	1	35	100	0
14	US 101 SB Ramps	South of Cochrane Rd	9,950	80	20	2	2	60	100	0
15	US 101 NB Ramps	North of Cochrane Rd	10,715	80	20	2	2	60	100	0

Notes:

-Sensitive receptors identified as residences, churches, schools and hospitals.

Appendix G
FHWA Highway Traffic Noise Prediction Model Inputs
Primrose School
Year 2035 No Project
Run Date: 9/22/2025

#	Roadway	Description	ADT	Day %	Night %	% Med. Trucks	% Hwy. Trucks	Speed	Distance to Receptor	Offset (dB)
1	Cochrane Rd	West of Woodview Ave	14,360	80	20	2	2	45	150	0
2	Cochrane Rd	Woodview Ave to Sutter Blvd	19,969	80	20	2	2	45	100	0
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	26,277	80	20	2	2	45	100	0
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	22,302	80	20	2	2	45	100	0
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	27,162	80	20	2	2	45	100	0
6	Cochrane Rd	East of US 101 NB Ramps	22,905	80	20	2	2	45	100	0
7	Woodview Ave	Cochrane Rd to Sutter Blvd	3,016	80	20	2	2	35	100	0
8	Skipper Ln	South of Cochrane Rd	1,204	80	20	2	2	25	100	0
9	Sutter Blvd	Cochrane Rd to Woodview Ave	8,330	80	20	2	2	35	100	0
10	Sutter Blvd	South of Cochrane Rd	703	80	20	1	1	35	100	0
11	Madrone Pkwy	Cochrane Rd to Project Drwy	6,811	80	20	1	1	35	100	0
12	Madrone Pkwy	Project Drwy to Woodview Ave	8,155	80	20	1	1	35	100	0
13	Madrone Pkwy	North of Woodview Ave	6,747	80	20	1	1	35	100	0
14	US 101 SB Ramps	South of Cochrane Rd	11,481	80	20	2	2	60	100	0
15	US 101 NB Ramps	North of Cochrane Rd	11,077	80	20	2	2	60	100	0

Notes:

-Sensitive receptors identified as residences, churches, schools and hospitals.

Appendix H
FHWA Highway Traffic Noise Prediction Model Inputs
Primrose School
Year 2035+Project
Run Date: 9/22/2025

#	Roadway	Description	ADT	Day %	Night %	% Med. Trucks	% Hwy. Trucks	Speed	Distance to Receptor	Offset (dB)
1	Cochrane Rd	West of Woodview Ave	14,940	80	20	2	2	45	150	0
2	Cochrane Rd	Woodview Ave to Sutter Blvd	20,599	80	20	2	2	45	100	0
3	Cochrane Rd	Sutter Blvd to Madrone Pkwy	26,982	80	20	2	2	45	100	0
4	Cochrane Rd	Madrone Pkwy to US 101 SB Ramps	22,782	80	20	2	2	45	100	0
5	Cochrane Rd	US 101 SB Ramps to US 101 NB Ramps	27,862	80	20	2	2	45	100	0
6	Cochrane Rd	East of US 101 NB Ramps	23,395	80	20	2	2	45	100	0
7	Woodview Ave	Cochrane Rd to Sutter Blvd	3,016	80	20	2	2	35	100	0
8	Skipper Ln	South of Cochrane Rd	1,204	80	20	2	2	25	100	0
9	Sutter Blvd	Cochrane Rd to Woodview Ave	8,380	80	20	2	2	35	100	0
10	Sutter Blvd	South of Cochrane Rd	703	80	20	1	1	35	100	0
11	Madrone Pkwy	Cochrane Rd to Project Drwy	7,051	80	20	1	1	35	100	0
12	Madrone Pkwy	Project Drwy to Woodview Ave	8,860	80	20	1	1	35	100	0
13	Madrone Pkwy	North of Woodview Ave	6,987	80	20	1	1	35	100	0
14	US 101 SB Ramps	South of Cochrane Rd	11,661	80	20	2	2	60	100	0
15	US 101 NB Ramps	North of Cochrane Rd	11,297	80	20	2	2	60	100	0

Notes:

-Sensitive receptors identified as residences, churches, schools and hospitals.

Attachment B

VMT Assessment

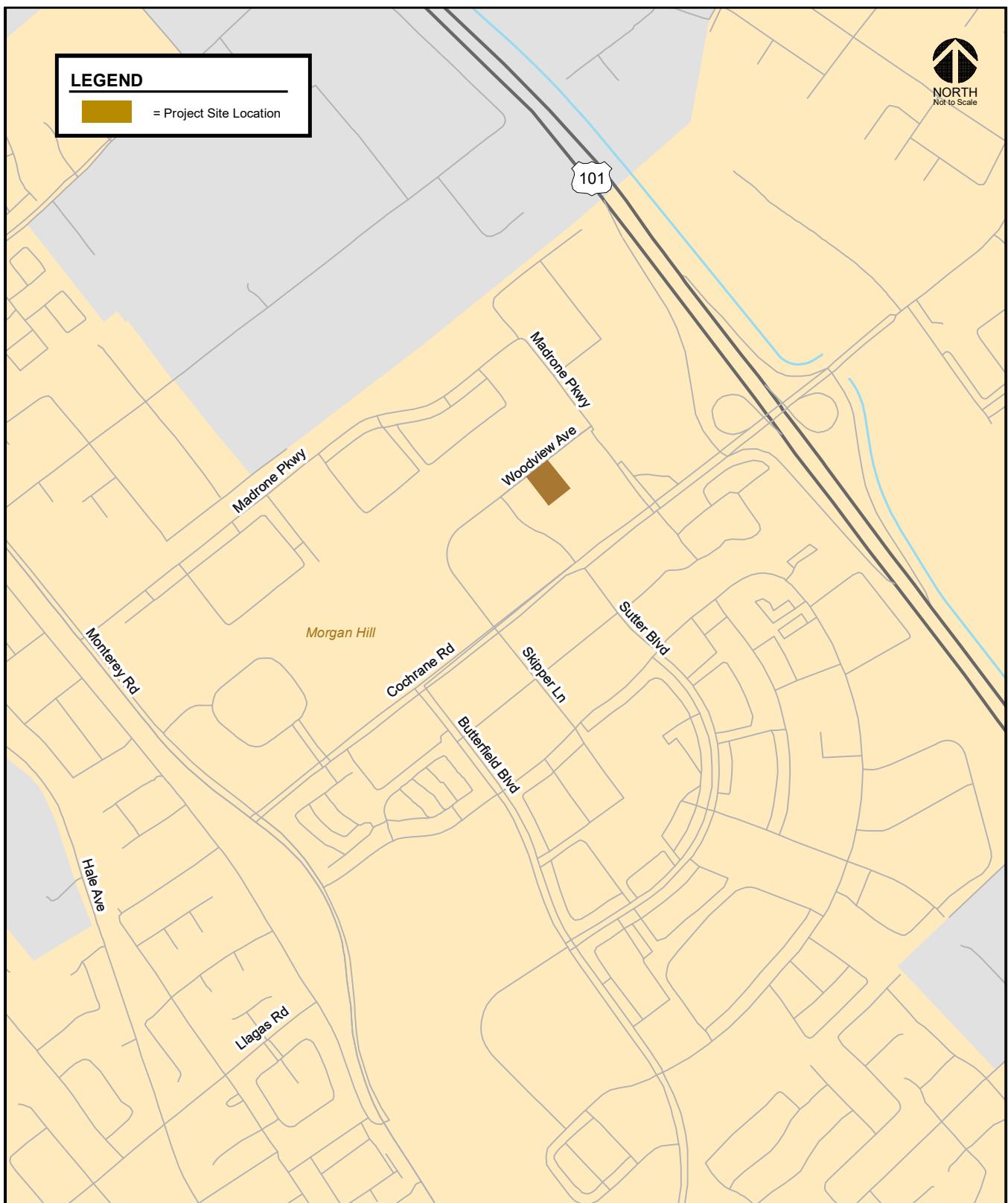
Memorandum

Date: October 14, 2025
To: Nick Pappani, Raney Planning & Management
From: Robert Del Rio, T.E., Luis Descanzo
Subject: VMT Assessment for the Proposed Primrose Preschool Development in Morgan Hill, California

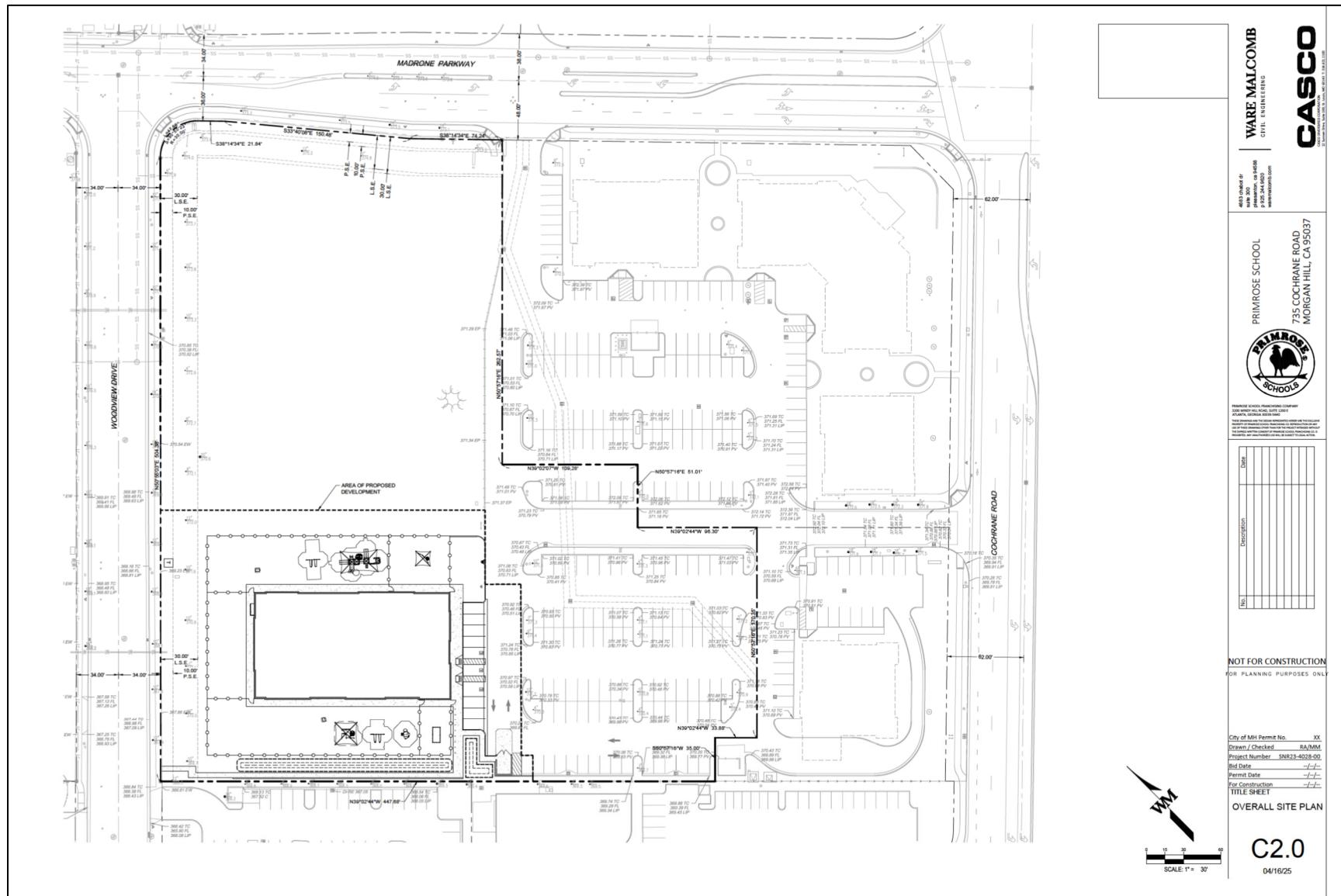
Hexagon Transportation Consultants, Inc. has completed a vehicle-miles traveled (VMT) assessment for the proposed daycare located at 735 Cochrane Road (APN 726-33-029) in Morgan Hill, California (see Figure 1). The site consists of an undeveloped parcel. As proposed, the project would consist of a 13,730 s.f. private preschool serving up to 212 students. The purpose of this memorandum is to provide an assessment of the project's effect on VMT. The VMT assessment methodology and results are discussed below.

VMT Assessment Methodology and Results

Pursuant to Senate Bill (SB) 743, the California Environmental Quality Act (CEQA) 2019 Update Guidelines Section 15064.3, subdivision (b) states that VMT will be the metric in analyzing transportation impacts for land use projects for CEQA purposes. VMT is the total miles of travel by personal motorized vehicles a project is expected to generate in a day. VMT measures the full distance of personal motorized vehicle-trips with one end within the project.


The City of Morgan Hill has adopted a policy to incorporate VMT methodologies and significance thresholds to be consistent with SB 743, replacing previous transportation policies that are based on levels of service.

City of Morgan Hill Screening Criteria


Resolution No. 24-039 was adopted by the Morgan Hill City Council in 2024 and provides screening criteria and thresholds of significance regarding VMT consistent with SB 743. Screening criteria are intended to identify when a project can be determined to cause a less-than-significant impact to VMT without conducting a detailed VMT evaluation based on project size and type, and are listed below:

- The City of Morgan Hill presumes that 100 percent affordable residential development in infill locations have a less-than-significant impact on VMT.
- The City of Morgan Hill expects that projects that generate or attract fewer than 110 trips per day generally will not cause a less-than-significant impact on VMT.
- The City of Morgan Hill expects that transportation projects that promote active transportation generally will cause a less-than-significant impact on VMT.
- ***The City of Morgan Hill expects that local-serving retail developments (considered to be less than 50,000 s.f. in size) will cause a less-than-significant impact on VMT.***

Figure 1
Site Location

Figure 2 Site Plan

However, the guidelines for the evaluation of VMT for development projects is limited to general land use categories such as residential, office, industrial, and retail. Therefore, the assessment of VMT for the proposed preschool required a conversion to an equivalent amount of one of the general land uses that has similar trip generating and trip origin/destination characteristics.

The number and origination/destination of daily trips and resulting VMT generated by the proposed day care center would be similar to that of local-serving retail since the day care center will primarily serve families who reside in Morgan Hill. Therefore, the proposed preschool was converted to an equivalent amount of local-serving retail space based on a comparison of estimated daily trips using ITE trip rates for the proposed preschool and typical retail uses.

Daily Trip Generation Estimates

Through empirical research, data have been collected that indicate the amount of traffic that can be expected to be generated by common land uses. Project trip generation was estimated by applying to the size and use of the development the appropriate trip generation rates. The average trip generation rates for Day Care Center (Land Use 565) as published in the Institute of Transportation Engineers (ITE) *Trip Generation Manual, 11th Edition* (2021) were applied to the proposed project capacity of 212 students. Based on the trip generation rates and the project size, it is estimated that the proposed development would generate 867 daily trips.

Daily and peak-hour trip generation estimates are shown on Table 1.

VMT Assessment Results

VMT Evaluation Using OPR Screening Criteria

The proposed project consists of a preschool with a 212-student capacity. The proposed project was converted to an equivalent amount of retail/commercial use for the purpose of the VMT assessment since the City of Morgan Hill screening criteria outlined above are not directly applicable to preschool uses. The results of the conversion of the proposed preschool to an equivalent amount of retail/commercial space, shown on Table 2, indicate that the preschool would generate net new daily trips equivalent to that of an approximately 16,000 s.f. retail development.

Since the project's converted retail size would be less than 50,000 s.f., the proposed project may be presumed to be a local-serving facility and would therefore have a less-than-significant impact on VMT. The OPR guidelines suggest that by adding retail opportunities into the urban fabric and thereby improving retail destination proximity, local-serving retail development tends to shorten trips and reduce VMT. Furthermore, few, if any, preschools or daycares operate in the northern portion of the City. As shown in Figure 3, the nearest existing preschool facilities are located more than one mile south of the proposed project site. The proposed preschool's location in this northern portion of the City will provide a proximate location for residents to a preschool, thus resulting in shorter trips and subsequent reduction in VMT generated by these residents for the purposes of utilizing a preschool.

As a result of the project's trip-making characteristics of a local-serving retail facility, it can be presumed that the proposed project would have a less-than-significant impact on VMT based on the City of Morgan Hill's VMT screening criteria.

Table 1
Trip Generation Summary

Land Use	Size	Daily		AM Peak Hour				PM Peak Hour					
		Split		Trips			Split		Trips				
		In	Out	In	Out	Total	In	Out	In	Out	Total		
Preschool ¹	212 Students	4.090	867	53%	47%	87	78	165	47%	53%	78	89	167

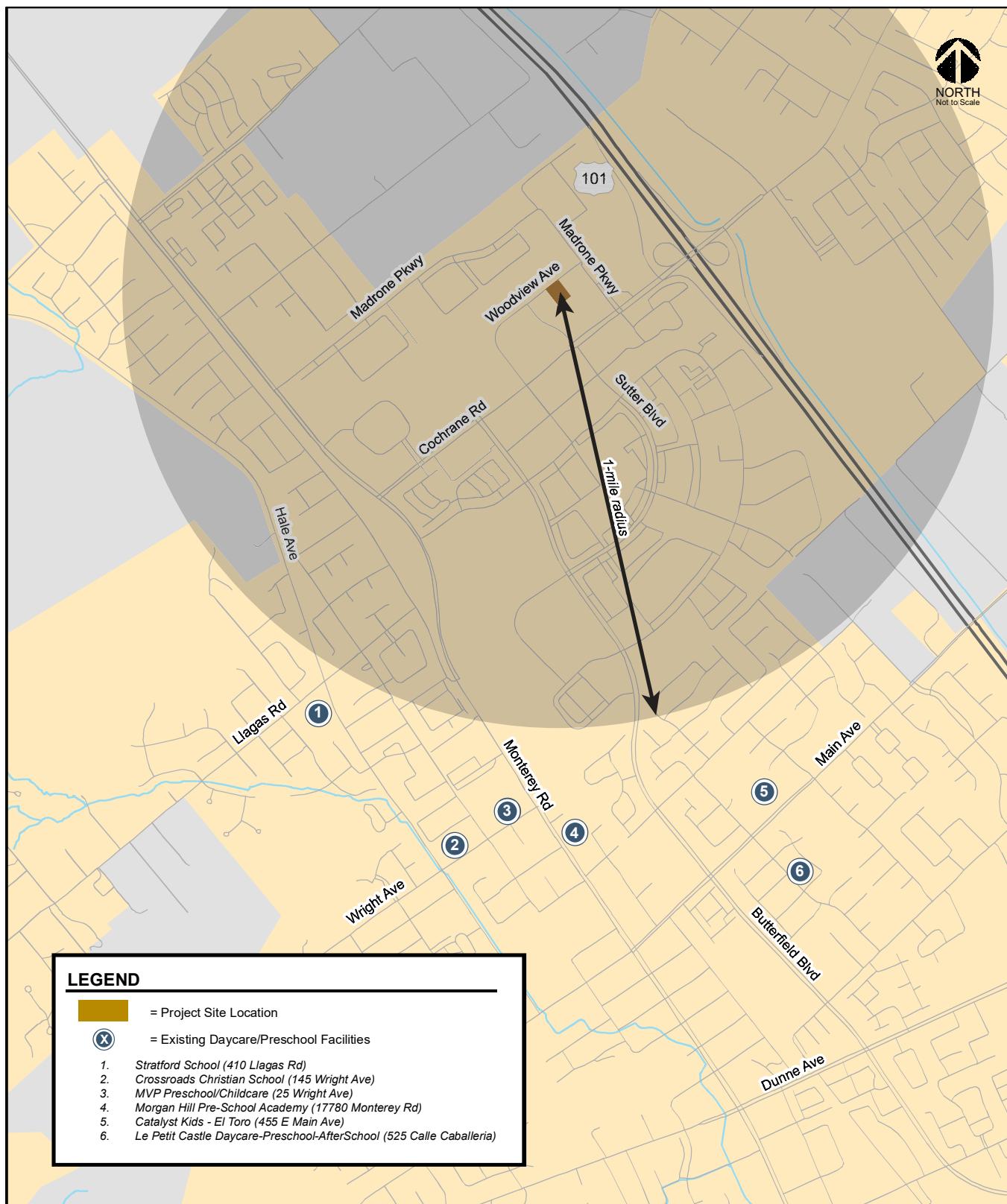

Source: ITE Trip Generation Manual, 11th Edition 2021.
¹Average trip rates (in trips per student) for "Day Care Center" (ITE Land Use 565) are used.

Table 2
Conversion to Equivalent Retail Space

Site/Land Use	Size	Daily	
		Rate	Trip
#565 - Daycare Center	212 Students	4.090	867
#822 - Strip Retail Plaza	16,000 Square Feet	54.45	867

Source: ITE Trip Generation Manual, 11th Edition 2021.

Figure 3
Similar Land Uses in the Project Vicinity

